Timing Fungicides And PGRs To Control Greenhouse Pests

Thrips under attack from an insect-killing fungus.

The management of pests and diseases during the production of greenhouse crops is not an isolated event. As such, interactions may occur that can have a significant impact on the success of any pest management strategy.

For example, under conditions of high relative humidity (greater than 75 percent), naturally-occurring populations of beneficial or insect-killing fungi may cause substantial mortality of insect and mite pests. Although beneficial fungi typically require high relative humidity, these fungi can be effective when the microclimate relative humidity around the spore (e.g., leaf surface) is high. This can occur even when the relative humidity within a greenhouse is less than 50 percent.

In addition, the effectiveness of beneficial fungi can vary depending on light intensity, plant size and plant architecture. Fungicides used to manage plant diseases may create issues associated with the compatibility of these chemicals and beneficial fungi, such as Beauveria bassiana, Metarhizium anisopliae and Isaria fumosoroseus, by impacting their effectiveness and persistence.

Furthermore, fungicides used to regulate or manage plant pathogenic fungi may or may not have any direct or indirect effects on beneficial fungi based on timing of application. However, not only do certain fungicides inhibit the effectiveness of beneficial fungi, but they may also affect insect or mite pests.

In fact, some fungicides have been shown to increase fecundity of insect pests, and fungicides could be potentially harmful to certain natural enemies, causing inadvertent outbreaks of pest populations.

Finally, plant growth regulators (PGRs) that are applied to regulate plant development, may increase populations of certain arthropod pests. So in this article, we will discuss both the direct and indirect impact of fungicides and PGRs, as well as possible interactions that may occur when greenhouse producers are attempting to manage pests.

Fungicides

Chemical fungicides may negatively impact beneficial fungi. This depends on a number of factors, including the particular fungicide (contact versus systemic) and rate used, as well as the formulation of the product.

Certain broad-spectrum fungicides might also decrease susceptibility of insect and mite pests to beneficial fungi. For example, certain scales are less susceptible to beneficial fungi after exposure to copper sprays, which may impact pest populations.

Although older fungicides such as benomyl and sulfur have been shown to have direct effects on plant-feeding mite pests, there is also the issue associated with indirect effects. There are some indirect effects that may involve increasing pest populations by inhibiting the activity of beneficial fungi through preventing infection of insect or mite pests. For example, fungicides have proven to inhibit infection by beneficial fungi of the green peach aphid (Myzus persicae), resulting in increases in aphid populations.

Still, this may not necessarily be due to the active ingredient. Inert ingredients, such as surfactants, adjuvants, carriers or solvents in the formulation may be responsible. In fact, certain surfactants and solvents have been shown to exhibit efficacy by themselves. Moreover, some fungicides may inadvertently delay plant senescence, prolonging the time that insects remain on plants and continue feeding, thus causing damage.

So what accounts for some of these interactions? Well, fungicides can affect conidial germination, or they may inhibit mycelial growth of beneficial fungi. Any inhibition of germination, growth and “killing power” of beneficial fungi may slow or prevent infection of insect and mite pests. Furthermore, fungicides may have variable effects on germination and growth of different beneficial fungi, which influences the infection process by inhibiting germination on the insect cuticle and decreasing the ability of beneficial fungi to kill insect pests.

The germination and production of conidia associated with the primary infection of beneficial fungi may be inhibited by a wide range of systemic and non-systemic fungicides. As such, conidia production affiliated with infected insect hosts may be reduced when exposed to fungicides. However, results may not be consistent, and again, application timing could influence compatibility with beneficial fungi.

Laboratory studies have reported that certain fungicides are capable of inhibiting growth, conidia germination and infection of insect hosts. Still, the results are quite variable. So it is important to note that most labels associated with the commercially available beneficial fungi products, including BotaniGard (BioWorks), No-Fly (Natural Industries) and PFR-97 (Certis USA) clearly state that fungicides can be detrimental to these products.

Companies typically provide specific information and directions for using these products in a program with fungicides. For example, both metalaxyl (Subdue) and mancozeb (Dithane) have been shown to inhibit development and mycelial growth of Beauveria bassiana, and the fungicides thiophanate-methyl (Cleary’s 3336), mancozeb (Dithane) and chlorothalonil (Daconil) inhibited mycelial growth and sporulation of B. bassiana under laboratory conditions.

Although certain fungicides may inhibit germination of beneficial fungi under laboratory conditions, they may have minimal to no affect on the ability to kill insect and mite pests under greenhouse conditions. In addition, many of these responses to fungicides are dose-dependent. For specific information on compatibility, always consult with a company representative of the product.

One of the primary means of utilizing chemical fungicides and beneficial fungi in a pest management program is to delay the timing of fungicide applications. In fact, reports indicate that delaying fungicide applications may enhance the efficacy of B. bassiana, though the mechanisms responsible for this are still unknown. Studies have shown that individual applications of the fungicides azoxystrobin (Heritage), fosetyl-aluminum (Aliette), iprodione (OHP 26 GT-O), myclobutanil (Eagle or Systhane) and fenhexamid (Decree) did not inhibit infection of B. bassiana. In addition, application of fungicides, after applying beneficial fungi, did not negatively impact efficacy nor inhibit infection or growth within the insect.

Interactions between pesticides (in this case, fungicides) and beneficial fungi may also be synergistic (enhance) or antagonistic (inhibit), which could affect insecticidal activity of beneficial fungi. For example, applications of B. bassiana two to four days before applying the fungicides metalaxyl (Subdue) or mancozeb (Dithane) appeared to synergize the activity of B. bassiana, whereas fungicide applications made before applying B. bassiana resulted in antagonism (reduced mortality). This delay appeared to allow the beneficial fungus to initiate the infection process (adhesion, germination, differentiation and penetration) without any disruption following the fungicide applications.

Fungicides may also affect arthropod pests by impacting prey quality and/or influencing plant quality. In fact, some sterol-inhibiting fungicides have demonstrated PGR activity, which may result in an increase in plant susceptibility to arthropod pests. Furthermore, effects of fungicides on beneficial fungi may be due to subtle influences on plant metabolism, resulting in an increase in susceptibility to particular phloem-feeding insects such as aphids.

In addition, certain fungicides may indirectly impact natural enemies negatively by reducing the acceptability of prey to either parasitoids and/or predators, which could alter the ability of natural enemies to regulate populations of insect or mite pests. This would allow pests to escape, attack and continue to cause damage.

Plant Growth Regulators

The interaction of PGRs with arthropod pests has not been studied as extensively compared to fungicides. However, PGRs, similar to fungicides, may change plant physiology by modifying levels of essential plant nutrients. This makes the plants more nutritious (a better food source) to insect or mite pests, particularly those with piercing-sucking mouthparts such as aphids, whiteflies and the twospotted spider mite.

This phenomenon has been demonstrated with chrysanthemum and leafminers in which the levels of amino acids were elevated following applications of PGRs, thus increasing susceptibility to feeding and subsequent plant damage. Furthermore, it has been proposed based on cultivar sensitivity that PGRs may modify or increase the attractiveness of certain cultivars, enhancing susceptibility to insect and mite pests.

Conversely, plants receiving applications of certain PGRs may actually exhibit a negative effect on insect pests via changes in the physical structure of plants. This occurs  by increasing cuticle thickness, which may make it difficult for phloem-feeding insects like aphids to insert their mouthparts into plant tissues when probing for food.

Takeaways

This article has presented information on the potential interactions that may occur between fungicides, beneficial fungi, plant growth regulators and arthropod pest complexes. The use of these compounds in commercial plant production is important in regulating plant pathogens, pest populations and plant growth with the end result being production of a quality and salable crop.

As such, the goal is to provide applicable information to greenhouse producers on possible inadvertent factors that may be responsible for the failure to regulate arthropod pest populations. One of the key factors to consider in order to ensure compatibility of fungicides with beneficial fungi is timing of application. Once this is understood, you can integrate both chemical fungicides and beneficial fungi into pest management programs.

Leave a Reply

One comment on “Timing Fungicides And PGRs To Control Greenhouse Pests

More From Crop Inputs...
Gaillardia x grandiflora 'Arizona Apricot'

February 25, 2015

National Garden Bureau Designates 2015 As Year Of The Gaillardia

Gaillardia, also known as the blanket flower, is a member of the sunflower family (Asteraceae) and a long-blooming pollinator plant. It is fitting that the National Garden Bureau has specified 2015 as The Year of the Gaillardia.

Read More
IPPS Sharing Plant Production Knowledge Globally Logo

February 25, 2015

International Plant Propagators Western Region Sets Annual Meeting Date

The annual meet for the International Plant Propagators' Society (IPPS) Western Region has been set for this September. It will take place September 23 to 26 in Modesto, Calif., and will include learning sessions, tours to local nurseries, a research poster display and poster presentations, various networking opportunities and an awards banquet to close the event.

Read More
Evolvulus Blue My Mind

February 24, 2015

Blue Ribbon Bloomers For Greenhouse Production

Grow what consumers want! Surveys show that blue is one of the top preferred colors of today’s consumers. Here are twelve top recommended blue-flowering Proven Winners annuals and perennials to suit your spring production cycle.

Read More
Latest Stories

February 17, 2015

A New Look At Biological Control: Can Plants Affect The…

The success of a biological control program depends on a number of factors including quality of natural enemies, timing of release, release rates and environmental conditions. However, what is typically not taken into consideration is how plants can affect the performance of natural enemies, including attack rate and searching ability. Biological control agents work hard to protect plants, but plants have ways to help themselves, too.

Read More

February 1, 2015

New Pest Control Products For Your Toolbox

Add one of these new insecticides to your IPM program for successful pest control.

Read More
IR-4_profile_Feb2015

January 29, 2015

IR-4: A Pest Management Resource For Growers

Almost 40 years ago, IR-4 (Interregional Research Project Number 4) began serving the ornamental horticulture industry, helping to facilitate the registration of pest management tools. IR-4 does this primarily by surveying growers about their pest management issues and then hosting workshops to review survey results and set priorities for the coming years. Most recently, IR-4 coordinated a meeting of researchers and industry members on pollinator health and neonicotinoid chemistries to start a discussion on the needed research. The next step will be to get the outcomes from that workshop out to the public.

Read More

January 28, 2015

Biocontrols 2015 Conference & Tradeshow: Peace Tree…

Lloyd Traven, a speaker at the upcoming Biocontrols 2015 Conference & Tradeshow, was one of the industry’s early adopters of biocontrols in the greenhouse. Traven, owner of Peace Tree Farm, is evangelical about the technology as an effective tool for resistance management, as well as improved plant quality that contributes to a grower’s bottom line.

Read More

January 27, 2015

Southwest Perennials Improves Production, Shortens Crop…

A father-and-son team find LEDs deliver a higher rooting rate for cuttings propagated under the lights.

Read More
Wainwright-web-620x349

January 22, 2015

Quality Control With Biocontrols

Make sure the shipment of beneficials that just arrived is viable and ready to go to work in your greenhouse, nursery, or field. Here are five steps you can take to ensure success with your biocontrols.

Read More

January 9, 2015

6 New Fertilizer Products For Healthy Plants

These five products add even more options for delivering nutrients to the root zone.

Read More

January 7, 2015

Fertilizers And The Future

As growers look for new ways to cut costs and conserve resources, fertilizer and equipment companies are offering products that strive to save water, reduce toxic runoff and keep chemicals out of the equation.

Read More

December 31, 2014

Gain Greater Control Of Fertilizer With Automated Ferti…

University researchers look at integrating irrigation and fertilization with the help of water sensors to reduce fertilizer treatments and improve application timing.

Read More
As directed by EPA, the bee hazard icon appears in the Directions For Use for each application site for specific use restrictions and instructions to protect bee and other pollinators.

December 9, 2014

Fact Sheet: The Value Of Neonicotinoids To Turf And Orn…

An extensive study of the diverse turf and ornamental industry (“The Green Industry”) reveals that neonicotinoids are the top-rated products used by professionals to control their most important pests in greenhouses, landscapes, lawns, nurseries and trees.

Read More
As directed by EPA, the bee hazard icon appears in the Directions For Use for each application site for specific use restrictions and instructions to protect bee and other pollinators.

December 9, 2014

New Study Finds Neonicotinoids Are Top-Rated Products F…

According to results of a survey by AgInfomatics, professionals in the turf and ornamental industries fear the loss of neonicotinoid products would reduce the quality of their plants and services, increase costs and negatively impact their ability to manage pest resistance.

Read More

December 2, 2014

Grow-Tech Announces BioStrate, Its Newest Hydroponic Gr…

Grow-Tech LLC recently announced the release of BioStrate Felt, a biobased textile specifically engineered for the growing of hydroponic microgreens and baby salad greens.

Read More

November 25, 2014

Former Harris Seeds Co. CEO, Per Jensen, Passes At 85

A passion for plants defined long-time industry influencer.

Read More

November 21, 2014

Ramped-Up Predatory Mite Production To Benefit Growers

Biological pest control company Beneficial Insectary is now producing both Amblyseius (=Neoseiulus) cucumeris and Stratiolaelaps scimitus (formerly Hypoaspis miles) at its facility in California. Domestic production in the U.S. is now benefiting growers in North America by reducing the transit time of perishable predatory mites between producer and grower.

Read More

November 18, 2014

7 New Media And Light Products For Greenhouse Productio…

New media and light products cover a broad sweep of growing conditions.

Read More

November 14, 2014

Skagit Gardens To Eliminate Use Of Neonicotinoid Pestic…

Skagit Gardens, a wholesale grower located outside Mount Vernon, Wash., will eliminate all use of neonicotinoid pesticides beginning in January 2015.

Read More

November 11, 2014

Clarification: White House Recommends Sourcing Insectic…

UPDATE: The Obama Administration's addendum to the Sustainable Practices for Designed Landscapes applies only to federal agencies “implementing landscaping practices on agency-owned or leased land or space.”

Read More

October 30, 2014

Basics & Beyond: Comparing Substrate Fertilizer Ame…

Cornell University researcher determines if substrate-incorporated slow-release fertilizers can be used to replace or reduce the need for liquid fertilizer for four spring crops.

Read More