Addressing pH Problems

Slideshow: Addressing pH Problems

If it was only as easy as turning a dial, pH problems would not exist. In the real world, the simplest way to avoid improper substrate pH is by keeping a close eye. Regularly monitoring substrate allows growers to identify when pH is just beginning to get out of range.

In most cases, small pH adjustments (0.2 to 0.6 pH units) are easily accomplished by simply changing the type of fertilizer. Large pH adjustments can be time consuming, costly and typically result from infrequent pH monitoring. 
 
The green line in Figure 1 (see page 44) represents a situation in which a grower is monitoring marigold substrate pH on a weekly basis. At week 4, the substrate pH has fallen out of the ideal pH zone and into the small corrective zone. The grower may have been using a fertilizer too acidic for the situation, and simply switching to a more basic fertilizer causes the pH to increase back into the ideal pH zone by week 6.
 
The red line represents a situation in which pH is not monitored and low pH problems are most likely noticed as a manifestation of micronutrient toxicity in the plants. Micronutrient toxicity is a common problem caused by low pH. In the latter situation, the pH is too low by week 6 to be restored with a switch to a more basic fertilizer. 
 
To solve this pH problem, growers will have to spend a lot of time mixing a solution of flowable lime or potassium bicarbonate, applying the solution to the crop and then washing off the foliage. This situation could easily be avoided with frequent pH monitoring and a simple fertilizer switch.
 
The form of nitrogen in your fertilizer is what causes substrate pH to decrease or increase. Nitrogen is the most important pH-controlling ion because it is the only element required by plants that can be supplied as both a positive cation (ammonium: NH4+) or a negative anion (nitrate: NO3) and accounts for more than half of the nutrient ions taken up by the plant. Fertilizers high in ammonium have an acidifying effect and cause substrate pH to decrease, and the opposite is true for fertilizers high in nitrate (Table 1). 
 
When ammonium (or other positive cations) is taken up by the plant, a positive charge enters the root. Plants must remain electrochemically neutral, and thus the roots secrete positively charged H+, which reduces the pH (Figure 2). When nitrate (or other negative anions) is absorbed, the roots balance the negative charge by absorbing H+. As more nitrate is absorbed, more H+ is removed from the soil solution, and the substrate pH increases (Figure 3, see page 46). 
 
Urea is a third form of nitrogen that is a common component of fertilizer. Once in the soil or the plant, urea is split into carbon dioxide and ammonium by the urease enzyme produced by microorganisms or the plant. For this reason, urea is considered equivalent to ammonium in respect to effect on substrate pH.

Ammonium Toxicty

When using fertilizers high in ammonium or urea, there is the threat of ammonium toxicity. Plants have the ability to store large amounts of nitrate but do not have this ability for ammonium, therefore excess uptake is toxic. If one was supplying less than or equal to the exact amount of nitrogen required by the plant, the ammonium plus urea could be 100 percent of the nitrogen. 
 
However, in most greenhouse situations, we are supplying nitrogen in excess of the plants’ needs. Another consideration when using fertilizers high in ammonium plus urea are nitrifying bacteria. These soil microorganisms convert ammonium to nitrate and are much less active at low temperatures, low-oxygen concentrations (saturated soil) and low pH. When temperatures and light level are low during the winter months, there is a greater risk of ammonium toxicity. 
 
Typically problems will not occur when ammonium plus urea are less than 40 percent, and this percentage can be higher when conditions favor nitrifying bacteria.

Ammonium-To-Nitrate Ratio Research

The following research was conducted at the Institute for Horticulture of the Weihenstephan-Triesdorf University of Applied Sciences. The institute is north of Munich, which is an area with limestone bedrock and water alkalinity that can reach 300 ppm calcium carbonate equivalent (CCE). Water with this level of alkalinity or bicarbonate would typically need to be blended with rain water, treated with acid or filtered by reverse osmosis to be suitable for crop production. Water alkalinity is essentially dissolved limestone and if not treated, will lead to problems with high pH such as micronutrient deficiency.
 
If the concentration of alkalinity in water is zero, the opposite will occur and substrate pH will decrease over time. Plant roots and associated microorganisms are continually releasing carbon dioxide (CO2) as a byproduct of respiration. Carbon dioxide combines with water in the soil solution to form carbonic acid, which lowers substrate pH.
 
The purpose of the research was to determine if certain ammonium-to-nitrate ratios in fertilizer could offset the pH effect of highly alkaline water or water with zero alkalinity with calibrachoa ‘Superbells Royal Blue.’ Treatments were deionized water and tap water in combination with five fertilizer ammonium to nitrate ratios (90:10, 70:30, 50:50, 30:70 and 10:90).
 
When plants were grown with deionized water, substrate pH decreased over time regardless of fertilizer treatment. Generally, end-of-crop substrate pH increased as the amount of ammonium in the fertilizer decreased. 
 
When plants were grown with high-alkalinity tap water, the opposite occurred and substrate pH increased over time, regardless of fertilizer treatment. Fertilizer treatment did not have as strong an effect on end-of-crop substrate pH as with deionized water. Results indicate the high alkalinity is the primary factor controlling the change in substrate pH. One bicarbonate ion (HCO3) added to the soil solution with irrigation water will neutralize one H+ ion (Reaction 1). Reaction 2 shows the carbonic acid is then converted to H2O and CO2. This is the opposite of what was discussed above where CO2 and H2O react to form carbonic acid. With high amounts of bicarbonate in the system, the reactions will be pushed to the right and acid will be neutralized. Again, this is similar process whereby limestone neutralizes H+.
 
Reaction 1:  H+  +  HCO3 (bicarbonate) –> H2CO3 (carbonic acid) [H+ neutralized]
 
Reaction 2:  H2CO3 –>   H2O (water)  +  CO2 (carbon dioxide)
 
This research indicates when water alkalinity is extremely low or extremely high, adjusting the ammonium-to-nitrate ratio is not an effective method to completely offset the pH effect. The key to successful pH management is continual monitoring and having several types of fertilizer on hand to make small corrections when needed.

Leave a Reply

More From Fertilization...
dramm-ferticart-feature

September 19, 2016

New Fertilizer Injector Cart Provides Full Aeration And Agitation

The new 50-gallon Ferticart from Dramm is designed to keep chemicals such as fungicides and plant growth regulators — as well as nematodes — viable through constant recirculation.

Read More
Roots with plant media background XL-W

July 2, 2016

University Of Florida Offering Online Nutrient Management Course In July

Topics include common nutrient problems, essential nutrients, fertilizer types, how to interpret a fertilizer label, managing total nutrient level, pH, and EC, onsite testing, and growing media.

Read More
Agro-K

May 19, 2016

Agro-K Expands Distribution In New England Through Partnership With Northeast Agricultural Sales

Agro-K, which manufactures conventional and organic foliar plant nutrients, will distribute its full line of foliar fertilizers and soil biological products through NEAG.

Read More
Latest Stories
dramm-ferticart-feature

September 19, 2016

New Fertilizer Injector Cart Provides Full Aeration And…

The new 50-gallon Ferticart from Dramm is designed to keep chemicals such as fungicides and plant growth regulators — as well as nematodes — viable through constant recirculation.

Read More
Roots with plant media background XL-W

July 2, 2016

University Of Florida Offering Online Nutrient Manageme…

Topics include common nutrient problems, essential nutrients, fertilizer types, how to interpret a fertilizer label, managing total nutrient level, pH, and EC, onsite testing, and growing media.

Read More
Agro-K

May 19, 2016

Agro-K Expands Distribution In New England Through Part…

Agro-K, which manufactures conventional and organic foliar plant nutrients, will distribute its full line of foliar fertilizers and soil biological products through NEAG.

Read More
Fertilizer Rates Feature Image

January 29, 2016

Bioworks Releases New Higher Nitrogen Fertilizer For Or…

Verdanta N-Vita 9-4-3 promotes foliar growth and features a slow release process, making nutrients available for a longer period of time.

Read More
Primrose Downward Leaf Roll From Calcium Deficiency

January 11, 2016

How Calcium Plays A Critical Role In Plant Health

Supply vegetables and poinsettias with a healthy amount of calcium to avoid tip and leaf burn.

Read More
Sustane Research Greenhouse 2015

January 7, 2016

Fertilizer Manufacturers Aim To Deliver Sustainable Sol…

Industry experts discuss the latest trends to help ensure 2016 is your best year yet.

Read More
Fertilizer Rates Feature Image

August 12, 2015

Selecting Fertilizer Rates For Several Spring Bedding P…

Fertilizing bedding plants can be difficult due to the differing needs of the large variety of plants that we grow. Many operations do not grow enough of any one crop to cater the fertilizer specifically for each crop. Therefore, grouping crops with similar fertilizer requirements and having two to three fertilizer strengths available is a practical way to ensure plants are getting the fertilizer they need. With many new plant varieties on the market, we wanted to conduct a trial at Cornell University to determine best fertilizer rates for several common bedding plant crops. 22 Bedding Plants Studied To Establish Fertilizer Rates Plugs and rooted liners of 22 crops (Table 1) were transplanted into 4-inch (500 mL volume) round pots with a commercial peat/perlite based substrate. The plants were grown in a glass greenhouse at Cornell University during the spring season at a spacing of one plant per square foot. Heating set […]

Read More
NSOrganicPlantFood3-1-1_featured

June 13, 2015

UMASS Fertilizer Trials Recommend Nature’s Source Organ…

In a recent online fact-sheet at its Extension website, the UMass Amherst Center for Agriculture, Food and the Environment lists Nature’s Source Organic Plant Food 3-1-1 as “the best liquid organic fertilizer,” according to Dr. Douglas Cox, Stockbridge School of Agriculture. It is called-out by the Extension after a number of years of studying the use of organic fertilizers for growing commercial greenhouse crops. The trials evaluated traditional water soluble and granular slow-release chemical fertilizers. Dr. Cox recommends Nature’s Source Organic Plant Food 3-1-1 as a liquid fertilizer that is readily available, cost effective, OMRI-listed and with good label directions for greenhouses. He also mentions the ease-of-use in how it mixes well with water and can pass fertilizer injectors. “Nature’s Source is currently the best liquid organic fertilizer,” Cox wrote in his article “Organic Fertilizers – Thoughts on Using Liquid Organic Fertilizers for Greenhouse Plants,” “I have seen no foliar chlorosis yet with this fertilizer. Nature’s source is widely available and a great […]

Read More

January 9, 2015

6 New Fertilizer Products For Healthy Plants

These five products add even more options for delivering nutrients to the root zone.

Read More

January 7, 2015

Fertilizers And The Future

As growers look for new ways to cut costs and conserve resources, fertilizer and equipment companies are offering products that strive to save water, reduce toxic runoff and keep chemicals out of the equation.

Read More

December 31, 2014

Gain Greater Control Of Fertilizer With Automated Ferti…

University researchers look at integrating irrigation and fertilization with the help of water sensors to reduce fertilizer treatments and improve application timing.

Read More

October 30, 2014

Basics & Beyond: Comparing Substrate Fertilizer Ame…

Cornell University researcher determines if substrate-incorporated slow-release fertilizers can be used to replace or reduce the need for liquid fertilizer for four spring crops.

Read More

July 24, 2014

Using Controlled Release Fertilizers To Produce Garden …

Researchers determined whether or not garden mums can be grown with controlled-release fertilizer, and if it reduces fertilizer leaching, as compared with water-soluble fertilizers.

Read More

March 14, 2014

New Foliage Pro Fertilizer Offers Complete Nutrition Pl…

Dyna-Gro Nutrition Solutions has developed a process it says is capable of keeping all 16 essential plant nutrients in solution form.

Read More

January 30, 2014

OASIS Grower Solutions Introduces New One-Bag Hydroponi…

The new 16-4-17 Hydroponic Fertilizer from OASIS Grower Solutions (OGS) is a one-bag solution that replaces two-part systems traditionally used by commercial hydroponic growers. It is specifically formulated for commercial hydroponic production of lettuce, herbs and vegetables.

Read More

December 30, 2013

Fertilizer Changes Growing Mix pH

When considering a fertilizer's influence on media pH, you need to know its acid or basic reaction.

Read More

December 30, 2013

Basics & Beyond: Fundamentals Of Phosphorus Nutriti…

Phosphorus is an essential element, after all.

Read More
Everris Liquid S.T.E.M.

December 30, 2013

New Fertilizers For 2014

New fertilizer products not only deliver optimum nutrition, they also provide for easier application and increased efficiency. Check out these new products to help your operation produce a healthy crop in 2014. Click through on the pages below.

Read More
[gravityform id="35" title="false" description="false"]