Understanding Plant Nutrition: Calibrachoa

Slideshow: Calibrachoa

Calibrachoa are often described as a “high feed” or “high iron” requiring crop. This is not exactly true.

Calibrachoa are an iron-inefficient crop and are prone to iron deficiency because they lack the ability to take up iron from the soil solution if the media pH is too high. Once iron deficiency sets in, calibrachoa will often lose vigor and become susceptible to secondary problems like overwatering or root diseases.

Therefore, to succeed with calibrachoa, you need to monitor media pH regularly and take the proper corrective actions when the media pH gets too high. Here are some pointers for growing calibrachoa.

Points To Consider

– With normal fertilization practices, the acceptable pH range for iron-inefficient crops like calibrachoa is 5.5 to 6.2. Once the media pH increases above 6.2, iron deficiency is likely (Figure 1).
 
– Make sure the iron deficiency symptoms are being caused by high media pH. Root damage caused by overwatering, high media EC, fungus gnats or root pathogens such as Pythium can give foliar symptoms similar in appearance to high media-pH induced iron deficiency because the plant does not have healthy roots to take up nutrients from the growing medium (Figure 2). In the case of root disease problems, careful irrigation and a fungicide drench are required to re-grow a healthy root system.
 
– If you have determined high media pH (greater than 6.2) is the problem, you should try to 1) lower the media pH using ammonium-based fertilizers, 2) acidify the irrigation water to near zero alkalinity and 3) apply supplemental iron drenches. 
 
All three steps can be applied separately, or combined into a single drench. These steps can also result in phytotoxicity, so trial on a small group of plants before applying to the entire crop.
 
1. Using ammonium-based fertilizers to lower media pH. Check with your fertilizer supplier to select a high-ammonium, acid-reaction fertilizer (such as 21-7-7 or 9-45-15). The effect on media-pH can sometimes be slow (more than one or two weeks) especially in cool wet conditions, or with small plants growing in large containers. 
 
Concentration of this corrective fertilizer drench is also important. We suggest 200 to 250 ppm for plugs and liners, and 300 to 400 ppm for finished plants as a one or two-time drench application. 
 
Make sure media-EC is not already high or you can cause salt damage of roots at those high fertilizer rates. Repeated applications of ammonium in cool, dark conditions may also cause toxic levels of ammonium to accumulate in leaf tissue. You may also see lush or softer shoot growth with the high ammonium fertilizer, requiring additional growth regulator applications.
 
2. Acidify the irrigation water to near zero alkalinity. Alkalinity can be thought of as the “lime content” of the irrigation water. The reason you want to remove as much alkalinity as possible from the water is the presence of high concentrations of alkalinity will reduce the effectiveness of an acid fertilizer. The acid residue produced from the fertilizer will neutralize the water alkalinity, rather than react with the media to lower the pH.
 
At a water-pH of 4.5, all the alkalinity is removed from the water, and any additional acid will cause the water pH to decrease rapidly. In general, when there is less than 80 ppm alkalinity in the water, there is no need to remove any additional alkalinity because the concentration is not enough to affect the acidification from the fertilizer. For alkalinity concentrations greater than 80 ppm, consider injecting acid in the irrigation water to bring water-pH down to about 5.0 (giving an alkalinity concentration of about 40 ppm).
 
You can base the amount of acid needed to get to a water-pH of 5.0 on trial and error, or you can calculate the appropriate acid rate for your water source from the North Carolina State University website. For example, 2.8 fluid ounces of 35 percent sulfuric acid will neutralize 100 ppm calcium carbonate of alkalinity in 100 gallons of irrigation water. Ensure you follow safe handling practices when working with acid, and that your injector equipment can handle corrosive chemicals. 
 
3. Apply a supplemental iron drench. Always remember applying supplemental iron by itself is not correcting the underlying problem of high media pH. Rather, it is covering up the problem. Failure to correct the high media pH problem may cause the plants to rapidly deteriorate once the supplemental iron applications are stopped.
There are four types of iron available to growers: iron sulfate (inorganic salt) and three chelates − FeEDTA (13 percent iron), FeDTPA (10-11 percent iron) and FeEDDHA (6 percent iron). The letters are important, because they describe the type of chelate being used. Iron forms decrease in solubility above pH 7 in the order from EDDHA (best) > DTPA > EDTA > sulfate (worst).
 
The amount of supplemental iron to apply depends on the degree of iron deficiency seen in the crop and the form of iron used. In general, FeEDDHA is the most effective iron form for supplemental applications (Figure 3). The amount of FeEDDHA to use may start at 1-2 ppm iron (0.2 to 0.4 ounces FeEDDHA per 100 gallons [1.5 to 3 grams/100 liters]) for the initial symptoms of iron deficiency to 10-25 ppm iron (2 to 5 ounces FeEDDHA per 100 gallons [15-38 grams/100 liters]) for severe iron deficiency. Always try supplemental drenches on a small number of plants first to test for phytotoxicity before applying to the overall crop. 
 
FeDTPA is another less effective iron chelate that’s often used for supplemental drenches. In general, the same amount (ounces/100 gallons) of FeDTPA should be used as with FeEDDHA. If the media pH is greater than 7.0, do not use FeEDTA or iron sulfate for supplemental iron drenches.
 
– Foliar iron sprays (to supply iron), acid drenches (to lower media pH) or drenching with high concentrations of iron sulfate (lower pH and supply iron) are also commonly recommended for correcting iron deficiency. However, after much research, it is our opinion that these methods are not as effective and are more likely to cause phytotoxicity problems than the method outlined above.
 
– Calibrachoa are sensitive to environmentally-induced boron deficiency, especially during propagation, just after transplanting or when the crop is grown under cool, humid and/or low-light conditions. Boron is taken up passively by the plant, so anything that reduces transpiration will reduce boron uptake. However, extreme care should be taken when applying additional boron to the crop. The difference between deficient concentrations, adequate concentrations and toxic concentration in the tissue is relatively small, so care needs to be taken in applying enough boron without over-application.
 
In general, the constant application of boron at 0.2 ppm is adequate, as long as transpiration is not limiting. This is equivalent to the “average” boron concentration applied by a peat-lite formula at 200 ppm nitrogen. If transpiration is limiting, the boron concentration can be increased in the fertilizer solution to 0.5 ppm (similar to summer pansy recommendations). Supplemental drench rates of 2 to 4 ppm boron can also be used if severe boron deficiency is present. 
 
Be careful about applying a boron drench more than two times during the crop because of the high risk of inducing boron toxicity. Foliar sprays of boron are not recommended.

Leave a Reply

More From Fertilization...
Jim Zablocki, Plant Prod

February 5, 2016

Sign Up For A Webinar On Using Plant Nutrition To Improve Quality

The webinar takes place March 2, and covers how leading growers are using plant nutrition to minimize costs, reduce the number of factors they need to worry about, and lessen environmental impacts.

Read More
Fertilizer Rates Feature Image

January 29, 2016

Bioworks Releases New Higher Nitrogen Fertilizer For Ornamental Crops

Verdanta N-Vita 9-4-3 promotes foliar growth and features a slow release process, making nutrients available for a longer period of time.

Read More
Primrose Downward Leaf Roll From Calcium Deficiency

January 11, 2016

How Calcium Plays A Critical Role In Plant Health

Supply vegetables and poinsettias with a healthy amount of calcium to avoid tip and leaf burn.

Read More
Latest Stories
Jim Zablocki, Plant Prod

February 5, 2016

Sign Up For A Webinar On Using Plant Nutrition To Impro…

The webinar takes place March 2, and covers how leading growers are using plant nutrition to minimize costs, reduce the number of factors they need to worry about, and lessen environmental impacts.

Read More
Fertilizer Rates Feature Image

January 29, 2016

Bioworks Releases New Higher Nitrogen Fertilizer For Or…

Verdanta N-Vita 9-4-3 promotes foliar growth and features a slow release process, making nutrients available for a longer period of time.

Read More
Primrose Downward Leaf Roll From Calcium Deficiency

January 11, 2016

How Calcium Plays A Critical Role In Plant Health

Supply vegetables and poinsettias with a healthy amount of calcium to avoid tip and leaf burn.

Read More
Sustane Research Greenhouse 2015

January 7, 2016

Fertilizer Manufacturers Aim To Deliver Sustainable Sol…

Industry experts discuss the latest trends to help ensure 2016 is your best year yet.

Read More
Fertilizer Rates Feature Image

August 12, 2015

Selecting Fertilizer Rates For Several Spring Bedding P…

Fertilizing bedding plants can be difficult due to the differing needs of the large variety of plants that we grow. Many operations do not grow enough of any one crop to cater the fertilizer specifically for each crop. Therefore, grouping crops with similar fertilizer requirements and having two to three fertilizer strengths available is a practical way to ensure plants are getting the fertilizer they need. With many new plant varieties on the market, we wanted to conduct a trial at Cornell University to determine best fertilizer rates for several common bedding plant crops. 22 Bedding Plants Studied To Establish Fertilizer Rates Plugs and rooted liners of 22 crops (Table 1) were transplanted into 4-inch (500 mL volume) round pots with a commercial peat/perlite based substrate. The plants were grown in a glass greenhouse at Cornell University during the spring season at a spacing of one plant per square foot. Heating set […]

Read More
NSOrganicPlantFood3-1-1_featured

June 13, 2015

UMASS Fertilizer Trials Recommend Nature’s Source Organ…

In a recent online fact-sheet at its Extension website, the UMass Amherst Center for Agriculture, Food and the Environment lists Nature’s Source Organic Plant Food 3-1-1 as “the best liquid organic fertilizer,” according to Dr. Douglas Cox, Stockbridge School of Agriculture. It is called-out by the Extension after a number of years of studying the use of organic fertilizers for growing commercial greenhouse crops. The trials evaluated traditional water soluble and granular slow-release chemical fertilizers. Dr. Cox recommends Nature’s Source Organic Plant Food 3-1-1 as a liquid fertilizer that is readily available, cost effective, OMRI-listed and with good label directions for greenhouses. He also mentions the ease-of-use in how it mixes well with water and can pass fertilizer injectors. “Nature’s Source is currently the best liquid organic fertilizer,” Cox wrote in his article “Organic Fertilizers – Thoughts on Using Liquid Organic Fertilizers for Greenhouse Plants,” “I have seen no foliar chlorosis yet with this fertilizer. Nature’s source is widely available and a great […]

Read More

January 9, 2015

6 New Fertilizer Products For Healthy Plants

These five products add even more options for delivering nutrients to the root zone.

Read More

January 7, 2015

Fertilizers And The Future

As growers look for new ways to cut costs and conserve resources, fertilizer and equipment companies are offering products that strive to save water, reduce toxic runoff and keep chemicals out of the equation.

Read More

December 31, 2014

Gain Greater Control Of Fertilizer With Automated Ferti…

University researchers look at integrating irrigation and fertilization with the help of water sensors to reduce fertilizer treatments and improve application timing.

Read More

October 30, 2014

Basics & Beyond: Comparing Substrate Fertilizer Ame…

Cornell University researcher determines if substrate-incorporated slow-release fertilizers can be used to replace or reduce the need for liquid fertilizer for four spring crops.

Read More

July 24, 2014

Using Controlled Release Fertilizers To Produce Garden …

Researchers determined whether or not garden mums can be grown with controlled-release fertilizer, and if it reduces fertilizer leaching, as compared with water-soluble fertilizers.

Read More

March 14, 2014

New Foliage Pro Fertilizer Offers Complete Nutrition Pl…

Dyna-Gro Nutrition Solutions has developed a process it says is capable of keeping all 16 essential plant nutrients in solution form.

Read More

January 30, 2014

OASIS Grower Solutions Introduces New One-Bag Hydroponi…

The new 16-4-17 Hydroponic Fertilizer from OASIS Grower Solutions (OGS) is a one-bag solution that replaces two-part systems traditionally used by commercial hydroponic growers. It is specifically formulated for commercial hydroponic production of lettuce, herbs and vegetables.

Read More

December 30, 2013

Fertilizer Changes Growing Mix pH

When considering a fertilizer's influence on media pH, you need to know its acid or basic reaction.

Read More

December 30, 2013

Basics & Beyond: Fundamentals Of Phosphorus Nutriti…

Phosphorus is an essential element, after all.

Read More
Everris Liquid S.T.E.M.

December 30, 2013

New Fertilizers For 2014

New fertilizer products not only deliver optimum nutrition, they also provide for easier application and increased efficiency. Check out these new products to help your operation produce a healthy crop in 2014. Click through on the pages below.

Read More

December 18, 2013

Focus On Fertilizer: Micronutrients And Organics

New fertilizer products are focusing on micronutrients and providing efficient options for organic production.

Read More

August 27, 2013

BioWorks Adds EcoVita To The Verdanta Family Of Biofert…

EcoVita, a homogeneous granular organic fertilizer, has been added to Bioworks Inc.’s Verdanta biofertilizers product family. This fertilizer will be manufactured and supplied to BioWorks by DCM Corporation of Belgium, a producer of natural and organic-based fertilizers in Western Europe. EcoVita is suitable for a wide variety of crops with its gentle release curve including:• Organic fertilization as a base nutrition in potting mixes• Leafy vegetables• Fruiting vegetables (s a top dressing) • Roses and other ornamentals The new fertilizer offers long-lasting and continuous action for 75 to 100 days and contains organic phosphorus (5 percent P2O5) for fast rooting. Nutrients in EcoVita are gradually released by the soil microbes, in addition to producing humus for better rooting and less leaching. EcoVita is OMRI Listed, making it suitable for use in organic production. “We’re pleased to introduce EcoVita 7-5-10 as our organic NPK product to complement our organic products: K-Vita 2-0-20 […]

Read More
[gravityform id="35" title="false" description="false"]