Understanding Plant Nutrition: Managing Media pH

Managing the pH of container media is a challenge in the greenhouse and nursery industry. Many growers face problems associated with their media pH either drifting up or down to levels that result in loss of crop quality and sales. In this article, we will discuss how the factors that we have discussed in previous articles (media, lime, water, fertilizer, etc.) interact to affect pH management.

Balancing Factors

Consider pH management as a balance (Figure 1). One side of the balance has the basic reactions commonly found in container media (i.e. the reactions that make the media pH increase). The four main basic reactions are: nitrate (NO3-N) fertilizers, irrigation water alkalinity, reactive lime and residual lime.
On the other side of the balance are the acidic reactions (i.e. the reactions that make the media pH decrease). The three main acidic reactions are ammoniacal (NH4-N) fertilizers, media lime requirement and plant species.

If the media pH is to remain stable over time, then the strength of all the basic reactions has to equal the strength of all the acidic reactions.

Why Media pH Changes

Media pH changes when the strength of the reactions on one side of the balance becomes greater than those on the other side. For example, consider growers who had a nutrition program that maintained a stable pH (all factors are balanced) that included a water source with 300 ppm alkalinity and a fertilizer with 59 percent ammoniacal nitrogen (20-20-20). If the growers switched to a fertilizer that was high in nitrate nitrogen like 13-2-13 (6 percent NH4-N), not only would they lose the acidic effect of the ammoniacal nitrogen, but the basic reactions caused by the higher concentration of nitrate nitrogen in the fertilizer would also increase.

Going back to the balance analogy, switching to a high nitrate fertilizer caused a decrease in strength to the acidic reactions and an increase in strength of the basic reactions. The overall effect would be that the medium pH would go up.

In contrast, consider growers who had a nutritional program that maintained a stable pH that included a water source with 20 ppm alkalinity and a fertilizer with 6 percent ammoniacal nitrogen (13-2-13). If they switched to a fertilizer that was high in ammoniacal nitrogen like 20-20-20 (59 percent NH4-N), they would not only lose the basic affect of the nitrate nitrogen, but the acidic affect from the higher ammoniacal nitrogen fertilizer would increase.

The net result would be that the acidic reactions are greater than the basic reactions, and the media pH would decrease over time.

Many times, growers will change the strength of the reactions on the pH balance without knowing. For example, residual lime can play a key role in counteracting the acidic affect of ammoniacal nitrogen. The amount of residual lime contained in a media will depend on the chemical composition, particle size distribution and incorporation rate of the limestone, as well as the lime requirement of the media. So anything that changes the lime rate, like changing peat sources, changing the ratio of components in the media or even year-to-year variability in the peat from the same company, will influence the amount of residual lime contained in the media after the pH has stabilized. So changes to residual lime rates will influence the amount of ammoniacal nitrogen fertilizer that can be applied to a crop before pH problems occur.

Always remember that changing any of the factors on the pH balance can change how all the factors interact to affect media pH.

Having A Plan To Manage pH

Fertilizer action plans are a good way of having a systematic approach to pH management. An added benefit is that everyone in the greenhouse will use the same methods for managing pH.

In general, fertilizer action plans adjust only two factors, fertilizer nitrogen form and water alkalinity. Once the crop is planted, water and fertilizer are the two factors that growers can most easily manage.

A simple fertilizer action plan is given in Table 1 for a 4-inch geranium crop. The alkalinity of the water was reduced through acid injection from 250 ppm to 80 ppm. The primary fertilizer was 17-5-17 at 200 ppm N, with a more acidic 20-10-20 being used when needed.

As long as the media pH and EC are within the acceptable range for the crop (6.0 to 6.6), as measured with weekly soil testing, then the primary fertilizer solution (17-5-17 with acidified water) is used (Table 1).

If the media pH is at or below the acceptable level, then the acid is turned off yet the 17-5-17 is still used. The resulting fertilizer solution is more basic, causing the media pH to increase back up to the acceptable level. If the media pH gets too high, then the acid remains but the fertilizer is changed to 20-10-20. The resulting fertilizer solution will be more acidic, causing the media pH to decrease. In either case, once the media pH is back within the acceptable range, then use of the standard fertilizer solution (17-5-17 with acidified water) is resumed.

Similarly, if the EC in media is above or below the acceptable level, then the fertilizer concentration is changed to affect media EC, but not necessarily media pH. However, once the media EC is back within the acceptable range, the standard concentration (200 ppm N) is used.

The action plan can be different for different crops. For example, a petunia crop will have a lower acceptable pH range than a geranium crop, but the same basic framework can be used.

Some crops are particularly sensitive to the media pH being outside the acceptable range. For example, low pH-induced iron/manganese toxicity is a common problem with geraniums. Typically, the risk of geraniums having iron/manganese toxicity increases dramatically when the media pH is less than 5.8.

A column could be added to the action plan to apply some basic chemical (either potassium bicarbonate or flowable limestone) to the crop if a media pH of 5.8 were reached. That way, everyone knows when to apply the basic chemical, and it is applied to the crop before significant problems typically occur.

Conclusion

The goal of any nutritional program is to keep the media pH and nutrient concentrations within acceptable ranges. Decisions about the type and concentration of fertilizer and the water alkalinity used to grow the crop should be based on regular testing (every one to two weeks). Simply measuring medium pH, medium EC and the EC and alkalinity concentration of the fertilizer solution, and acting on that information can solve most pH or nutritional problems by alerting growers to problem trends before plants are stressed. Don’t forget to monitor other factors (e.g. root diseases, greenhouse temperatures, pest problems, high or low medium EC) to help rule out these problems, because many factors other than medium pH can cause problems in the crop.

Leave a Reply

One comment on “Understanding Plant Nutrition: Managing Media pH

  1. I have high alkaline water in my area (280-320 ppm)with no quick way to get better water so i must manage the balancing act as explained above. Thank you for helping me better understand.

More From Fertilization...
Jim Zablocki, Plant Prod

February 5, 2016

Sign Up For A Webinar On Using Plant Nutrition To Improve Quality

The webinar takes place March 2, and covers how leading growers are using plant nutrition to minimize costs, reduce the number of factors they need to worry about, and lessen environmental impacts.

Read More
Fertilizer Rates Feature Image

January 29, 2016

Bioworks Releases New Higher Nitrogen Fertilizer For Ornamental Crops

Verdanta N-Vita 9-4-3 promotes foliar growth and features a slow release process, making nutrients available for a longer period of time.

Read More
Primrose Downward Leaf Roll From Calcium Deficiency

January 11, 2016

How Calcium Plays A Critical Role In Plant Health

Supply vegetables and poinsettias with a healthy amount of calcium to avoid tip and leaf burn.

Read More
Latest Stories
Jim Zablocki, Plant Prod

February 5, 2016

Sign Up For A Webinar On Using Plant Nutrition To Impro…

The webinar takes place March 2, and covers how leading growers are using plant nutrition to minimize costs, reduce the number of factors they need to worry about, and lessen environmental impacts.

Read More
Fertilizer Rates Feature Image

January 29, 2016

Bioworks Releases New Higher Nitrogen Fertilizer For Or…

Verdanta N-Vita 9-4-3 promotes foliar growth and features a slow release process, making nutrients available for a longer period of time.

Read More
Primrose Downward Leaf Roll From Calcium Deficiency

January 11, 2016

How Calcium Plays A Critical Role In Plant Health

Supply vegetables and poinsettias with a healthy amount of calcium to avoid tip and leaf burn.

Read More
Sustane Research Greenhouse 2015

January 7, 2016

Fertilizer Manufacturers Aim To Deliver Sustainable Sol…

Industry experts discuss the latest trends to help ensure 2016 is your best year yet.

Read More
Fertilizer Rates Feature Image

August 12, 2015

Selecting Fertilizer Rates For Several Spring Bedding P…

Fertilizing bedding plants can be difficult due to the differing needs of the large variety of plants that we grow. Many operations do not grow enough of any one crop to cater the fertilizer specifically for each crop. Therefore, grouping crops with similar fertilizer requirements and having two to three fertilizer strengths available is a practical way to ensure plants are getting the fertilizer they need. With many new plant varieties on the market, we wanted to conduct a trial at Cornell University to determine best fertilizer rates for several common bedding plant crops. 22 Bedding Plants Studied To Establish Fertilizer Rates Plugs and rooted liners of 22 crops (Table 1) were transplanted into 4-inch (500 mL volume) round pots with a commercial peat/perlite based substrate. The plants were grown in a glass greenhouse at Cornell University during the spring season at a spacing of one plant per square foot. Heating set […]

Read More
NSOrganicPlantFood3-1-1_featured

June 13, 2015

UMASS Fertilizer Trials Recommend Nature’s Source Organ…

In a recent online fact-sheet at its Extension website, the UMass Amherst Center for Agriculture, Food and the Environment lists Nature’s Source Organic Plant Food 3-1-1 as “the best liquid organic fertilizer,” according to Dr. Douglas Cox, Stockbridge School of Agriculture. It is called-out by the Extension after a number of years of studying the use of organic fertilizers for growing commercial greenhouse crops. The trials evaluated traditional water soluble and granular slow-release chemical fertilizers. Dr. Cox recommends Nature’s Source Organic Plant Food 3-1-1 as a liquid fertilizer that is readily available, cost effective, OMRI-listed and with good label directions for greenhouses. He also mentions the ease-of-use in how it mixes well with water and can pass fertilizer injectors. “Nature’s Source is currently the best liquid organic fertilizer,” Cox wrote in his article “Organic Fertilizers – Thoughts on Using Liquid Organic Fertilizers for Greenhouse Plants,” “I have seen no foliar chlorosis yet with this fertilizer. Nature’s source is widely available and a great […]

Read More

January 9, 2015

6 New Fertilizer Products For Healthy Plants

These five products add even more options for delivering nutrients to the root zone.

Read More

January 7, 2015

Fertilizers And The Future

As growers look for new ways to cut costs and conserve resources, fertilizer and equipment companies are offering products that strive to save water, reduce toxic runoff and keep chemicals out of the equation.

Read More

December 31, 2014

Gain Greater Control Of Fertilizer With Automated Ferti…

University researchers look at integrating irrigation and fertilization with the help of water sensors to reduce fertilizer treatments and improve application timing.

Read More

October 30, 2014

Basics & Beyond: Comparing Substrate Fertilizer Ame…

Cornell University researcher determines if substrate-incorporated slow-release fertilizers can be used to replace or reduce the need for liquid fertilizer for four spring crops.

Read More

July 24, 2014

Using Controlled Release Fertilizers To Produce Garden …

Researchers determined whether or not garden mums can be grown with controlled-release fertilizer, and if it reduces fertilizer leaching, as compared with water-soluble fertilizers.

Read More

March 14, 2014

New Foliage Pro Fertilizer Offers Complete Nutrition Pl…

Dyna-Gro Nutrition Solutions has developed a process it says is capable of keeping all 16 essential plant nutrients in solution form.

Read More

January 30, 2014

OASIS Grower Solutions Introduces New One-Bag Hydroponi…

The new 16-4-17 Hydroponic Fertilizer from OASIS Grower Solutions (OGS) is a one-bag solution that replaces two-part systems traditionally used by commercial hydroponic growers. It is specifically formulated for commercial hydroponic production of lettuce, herbs and vegetables.

Read More

December 30, 2013

Fertilizer Changes Growing Mix pH

When considering a fertilizer's influence on media pH, you need to know its acid or basic reaction.

Read More

December 30, 2013

Basics & Beyond: Fundamentals Of Phosphorus Nutriti…

Phosphorus is an essential element, after all.

Read More
Everris Liquid S.T.E.M.

December 30, 2013

New Fertilizers For 2014

New fertilizer products not only deliver optimum nutrition, they also provide for easier application and increased efficiency. Check out these new products to help your operation produce a healthy crop in 2014. Click through on the pages below.

Read More

December 18, 2013

Focus On Fertilizer: Micronutrients And Organics

New fertilizer products are focusing on micronutrients and providing efficient options for organic production.

Read More

August 27, 2013

BioWorks Adds EcoVita To The Verdanta Family Of Biofert…

EcoVita, a homogeneous granular organic fertilizer, has been added to Bioworks Inc.’s Verdanta biofertilizers product family. This fertilizer will be manufactured and supplied to BioWorks by DCM Corporation of Belgium, a producer of natural and organic-based fertilizers in Western Europe. EcoVita is suitable for a wide variety of crops with its gentle release curve including:• Organic fertilization as a base nutrition in potting mixes• Leafy vegetables• Fruiting vegetables (s a top dressing) • Roses and other ornamentals The new fertilizer offers long-lasting and continuous action for 75 to 100 days and contains organic phosphorus (5 percent P2O5) for fast rooting. Nutrients in EcoVita are gradually released by the soil microbes, in addition to producing humus for better rooting and less leaching. EcoVita is OMRI Listed, making it suitable for use in organic production. “We’re pleased to introduce EcoVita 7-5-10 as our organic NPK product to complement our organic products: K-Vita 2-0-20 […]

Read More
[gravityform id="35" title="false" description="false"]