Getting Results With A Liner Dip

Getting Results With A Liner Dip

Controlling plant height is a key factor in producing a quality crop and maximizing the number of plants that can be shipped per rack. Growers often use both chemical and non-chemical height control techniques to suppress stem elongation. Plant growth regulators (PGRs) are commonly applied as foliar sprays, media drenches or sprenches (high-volume spray with runoff into the media), depending primarily on the duration of the desired response.

A PGR application method that is being increasingly used by greenhouse growers is referred to as a “liner dip” or “plug dip.” This application method involves placing a plug tray in a shallow PGR solution, allowing the chemical to absorb into the growing media. After the chemical application and when plants are safe to handle, the young plants are subsequently transplanted into finish containers. A plug dip can be very effective on vigorous species and provide a moderately long-lasting response. There is also less potential for a flowering delay because the chemical does not contact the tops of shoots where flowers develop.

The plug dip method provides the opportunity to treat young plants before planting a mixed combination container. Combo planters often include plant species with different growth habits and development rates, thus conflicting PGR requirements. Aggressive species can grow too fast and quickly dominate the container, outgrowing less vigorous species (Figure 1). A PGR applied to the mixed container as a foliar spray or media drench would also affect the less-aggressive species, further suppressing its growth. The application of a PGR to plugs of the aggressive species before transplant as a plug dip could overcome this challenge and improve the quality of mixed containers.

Keys To Success

Although many growers have been successful with PGR plug dips, some growers have noted concerns about inconsistent responses between applications. During the past several years, researchers at Michigan State University, the University of Florida, and Virginia Tech have performed many PGR plug dip trials to determine appropriate application rates for bedding plants and herbaceous perennials, and to learn which factors can influence the response. Below are four keys to success to ensure the best results with PGR plug dips.

1. Use the correct plug dip rate: The rate influences how much active ingredient is absorbed by the media and, thus, the magnitude of height control. For example, plugs of sweet potato ‘Blackie’ dipped for 30 seconds in Piccolo (paclobutrazol) at 4, 8 or 12 ppm were 24, 29 and 39 percent shorter than non-treated plants when measured six weeks after application (Figure 2). Application rates that are too high will cause excessive suppression of stem elongation, and the crop may not finish on schedule or be of low quality. For example, stem elongation of bacopa ‘Falls Big Pearl’ was severely retarded in plugs dipped in 12 ppm Piccolo for 30 seconds, and plants were on average 7 inches shorter than untreated plants at four weeks after application (Figure 3).

Plug dips are effective using products that are absorbed by roots and translocated to the growing shoots, which include products containing paclobutrazol, uniconazole, flurprimidol or ancymidol. We recommend that growers perform their own trials on a small scale to determine the best application rate for their growing environment, crop and desired response. Application rates for plug dips may be comparable to those used for drench applications.

2. Control your media moisture content prior to the dip: The moisture content of the plug media will influence how much of the chemical solution is absorbed during the dip. A plug with dry media at the time of application will absorb much more chemical than a plug with wet media. For example, dry plugs of petunia ‘Wave Purple’ dipped in Piccolo for 30 seconds were 5 inches shorter at six weeks after application than plugs that had moist media at application (Figure 4).

Plugs along the edges of a tray usually dry out faster than those in the middle. Large variations in moisture content can lead to inconsistent plug dip responses. A good rule of thumb is that plug trays should be only slightly dry at the time of application. In our research greenhouses, this was accomplished by irrigating plug trays during late afternoons and making the PGR application on the following morning.

3. Timing is important: The duration that the plug tray is in the PGR solution can influence how much of the active ingredient is absorbed by the media. Research at the University of Florida showed that if the plug media was dry at application, there was little difference in response between dip durations of 30 seconds and 2 minutes. Very short dips (less than 10 seconds) are not recommended because the volume of PGR solution absorbed can be more variable. Thus, we recommend that growers begin with a dip time of 30 seconds and adjust the duration if necessary.

4. Develop a repeatable application procedure. The best way to prevent inconsistent responses with a PGR plug dip is to develop a repeatable application procedure. Growers should perform small trials to determine appropriate rates and the best dip duration for each crop. Just as critical is to control watering of the plugs and liners before the dip so that the media is consistently and uniformly slightly moist. Be sure to take notes and document the application protocol and the plant response. You may also wish to leave some plugs untreated to document the relative response of the plug dip to non-dipped plants.

Other Important Factors

The degree of root development and quality of the plug have been shown to have a slight influence on the plug dip effectiveness. A PGR dip on plugs with less root development can cause greater height suppression than mature plugs with a well-developed root system. The depth that the plug tray is in the solution has little influence on the PGR response. In our greenhouse, we place each plug tray in the chemical solution so that the PGR solution level is approximately 50 percent of the tray height.

Sanitation and proper disinfection are important to avoid transferring diseases among crops. Remember that after the chemical application, plugs should not be transplanted until after the restricted entry interval (REI) for the product, most of which are 12 hours. Plugs can be held and transplanted several days after the PGR dip without reducing the effectiveness of the application.

Large-scale greenhouse operations that treat hundreds of trays with a PGR may aim to automate the plug dip. For example, trays could move on a conveyer and pass through a PGR solution (Figure 5). The speed of the belt will need to be adjusted so that plants absorb a desirable amount of PGR solution. Although expensive, this kind of system helps ensure uniform and repeatable results from a plug dip.

Leave a Reply

More From Crop Inputs...
Aphids

July 7, 2017

New Tools for Your Crop Protection Arsenal in the Greenhouse

Over the past few months, crop protection companies have developed several new products designed to help you manage a wide range of insect and disease pests. Here’s a look at some of them.

Read More
Yellow Stick Card for thrips

July 5, 2017

Tips From a Top 100 Grower for Effective Thrips Control

A combination of conventional materials and biologicals can help provide season-long management of thrips in hanging baskets.

Read More
Magnesium deficiency on poinsettia

July 4, 2017

How to Manage the 3 M’s of Poinsettias: Manganese, Molybdenum, and Magnesium

Proper nutrition is a critical part of successful greenhouse production. Managing these three key elements properly will keep your poinsettia crops healthy and strong.

Read More
Latest Stories
Aphids

July 7, 2017

New Tools for Your Crop Protection Arsenal in the Green…

Over the past few months, crop protection companies have developed several new products designed to help you manage a wide range of insect and disease pests. Here’s a look at some of them.

Read More
Yellow Stick Card for thrips

July 5, 2017

Tips From a Top 100 Grower for Effective Thrips Control

A combination of conventional materials and biologicals can help provide season-long management of thrips in hanging baskets.

Read More
Primula acaulis, Botrytis, Disease, Griffin Greenhouse Supplies

May 30, 2017

BioWorks Launches New Biofungicide for Botrytis Control

BotryStop was developed for the control of pathogens such as Botrytis, Sclerotinia, and Monilinia in several crops, including ornamentals.

Read More
Adult Aphidoletes in web - Feature

May 27, 2017

How to Overcome Biocontrol Challenges by Thinking Outsi…

With a little creative thinking and adjustments to your strategy, you can overcome your greenhouse biocontrol challenges.

Read More
Cannabis Seedling

May 20, 2017

Biocontrols: A Practical Option for Cannabis

With limited options for chemical pest control, cannabis growers are incorporating biocontrols into their integrated pest management programs. More education will cement this solution as a viable option in this emerging market.

Read More
Christmas Cactus

May 18, 2017

How to Increase Branching and Flower Bud Production of …

Based on research completed at North Carolina State University, here are some methods for increasing branching and flower bud production of Christmas Cactus (Schlumbergera bridgessii).

Read More
Herbicide Drift in the Greenhouse

May 15, 2017

How to Identify and Mitigate Herbicide Contamination in…

Herbicides applied off-site or within the greenhouse can significantly damage ornamental and edible crops. Beth Scheckelhoff, an Extension Educator for Greenhouse Systems at The Ohio State University, provides some examples and basic recommendations for mitigating and preventing herbicide contamination and injury in the future.

Read More

May 4, 2017

Bayer Altus Update: Neonic Insect Control Alternative N…

Altus, a butenolide class insecticide with the active ingredient flupyradifurone, will be available beginning May 1, and is labeled for greenhouse and nursery use on ornamental plants, vegetable transplants, and indoor vegetable production.

Read More
Bumblebees

May 2, 2017

Pollinator Update: The Bumblebee on the Endangered List…

With plenty of attention being placed on pollinator health around the country and the world, here’s what you need to know.

Read More
Florikan Space Technology Hall of Fame

April 25, 2017

Out-Of-This-World Plant Nutrition: Fertilizer Company I…

NASA scientists are growing vegetables on the International Space Station using Florikan’s controlled release fertilizer.

Read More
OHP Biosolutions

April 8, 2017

OHP Enters Biocontrols Market With New Product Line

The OHP Biosolutions program will feature insecticides, fungicides, and other products designed to address the expanding segment of growers who use biological products.

Read More
Dramm Low Volume Coldfogger Sprayer

April 2, 2017

Dramm Upgrades Its Coldfogger Low-Volume Sprayer to Imp…

Dramm recently updated its Coldfogger, a targeted low-volume sprayer, to a new model that offers a more durable pump that is easier to use and allows for the use of corrosive chemistries.

Read More

March 20, 2017

AgBiome’s New Zio Biofungicide Receives EPA Regis…

The new biofungicide is the first product from AgBiome, and will be marketed by SePRO Corp. in the ornamentals market.

Read More
Oat Grass Banker System feature

March 20, 2017

How You Can Market the Benefits of Biocontrols

Educating retailers and end consumers about the use of biocontrols and why it’s important has helped Fessler Nursery gain new customers and profits.

Read More

February 28, 2017

OHP Launches New Ovicide/Miticide, Announces Partnershi…

Applause is a new miticide that targets eggs and immature stages of several mite species. Through the Vestaron partnership, OHP will market Spear-O, a toxin-derived bioinsecticide.

Read More

February 26, 2017

AgBiome Will Enter the Ornamentals Market With a New Bi…

AgBiome, a young company with teammates steeped in decades of experience in the crop protection world, sees an opportunity to bring products to market that fill the existing gaps in plant protection. The company has partnered with SePRO to market and distribute Zio, a biological fungicide expecting EPA registration this spring.

Read More
Tomato Spotted Wilt Virus on Osteospormum

February 23, 2017

4 Pathogens to Prepare For in 2017

Early detection of disease and virus symptoms in the greenhouse is critical. One expert says there are a few pathogens in particular that growers should be monitoring.

Read More
Boxwood Blight

February 7, 2017

Boxwood Blight Detection in Illinois Has Growers on Ale…

Symptoms of boxwood blight, which can spread quickly in production facilities, include leaf spots, stem cankers, and defoliation.

Read More