Control Of Thrips With Systemic Insecticides

WFT on zinnia

One common question asked by greenhouse producers is associated with the effectiveness of systemic insecticides against the western flower thrips, Frankliniella occidentalis. Western flower thrips (WFT) are the most important insect pest of horticultural greenhouse-grown crops worldwide. In order to develop controls, it is essential to understand the feeding behavior of these pests.

WFT have piercing-sucking mouthparts, but they do not feed exclusively in the phloem sieve tubes. Instead, they feed within the mesophyll and epidermal cells of leaf tissues. More specifically, they feed on plants by inserting their tubular stylets into cells and withdrawing the cellular contents. This feeding behavior may inhibit the effectiveness of systemic insecticides against WFT; however, this is dependent on whether they are feeding on leaves or flowers. In addition, the anthophilic (inhabiting flowers) nature of WFT limits their exposure to systemic insecticides for several reasons:

The active ingredient is not readily transported into flower tissues (petals and sepals).

The concentration of active ingredient that is translocated into flower parts may not be sufficient to directly kill the thrips.

The active ingredient of a systemic insecticide may degrade faster in flower parts and differences in the transpiration rates between flowers and leaves may result in flowers being less efficient sinks for the active ingredient of systemic insecticides.

Flowers don’t last as long as leaves, so there is less time for systemic insecticides to accumulate compared to the foliage.

Systemic insecticides may not provide fast knockdown to prevent thrips damage to flowers when abundant populations are present.

All of these factors, however, may depend on the systemic insecticide and the associated water solubility, because systemic insecticides with greater water solubility may accumulate in flower parts at concentrations sufficient to kill WFT.

Water Solubility Is Key To Efficacy

Systemic insecticides applied to the soil/growing medium must be water-soluble to some degree in order to allow the dissolved active ingredient to be absorbed by plant roots. Water solubility determines how rapidly the active ingredient is absorbed by roots and translocated throughout plant parts such as leaves and stems. A highly water-soluble systemic insecticide may kill insect pests quickly; however, it may not provide long-term or sufficient residual activity compared to a less water-soluble systemic insecticide. A less water-soluble systemic may persist longer, but may not be as effective unless the rate is adjusted to compensate for the slower mobility.

Table 1 presents the systemic insecticides labeled for use in greenhouse production systems that can be applied to the soil/growing medium, and their corresponding water solubilities.

Table 1. Insecticides with systemic activity, when applied as a drench or granule to soil/growing medium that are commercially available for use in greenhouse production systems including common name (=active ingredient), trade name, and corresponding water solubility.
Common Name Trade Name Water Solubility (ppm)
Acephate  Orthene  79,000
Azadirachtin  Azatrol, Aza-Direct and Molt-X  0.50
Dinotefuran  Safari  39,000
Imidacloprid  Marathon  510
Spirotetramat  Kontos  29
Thiamethoxam  Flagship  4,100
**Acetamiprid (TriStar) is not labeled for soil/growing medium applications. It is only registered for use as foliar or sprench applications. This is why acetamiprid is not included in Table 1.

Here’s one example of how water solubility influences the uptake and efficacy of systemic insecticides. Imidacloprid (Marathon), which has a water solubility of 0.51 g/L or 500 ppm, tends to be less effective against flower- and pollen-feeding insect pests including WFT. Research has shown that acephate, which has a water solubility of 790 g/L or approximately 79,000 ppm, is converted into the metabolite — methamidiphos and actually moves into flowers, protecting them from WFT feeding injury. It may provide systemic protection to flower buds, which allows plants to flower and minimizes feeding injury resulting in good flower quality.

WFT feeding on leaves (both nymphs and adults) tend to be more susceptible to systemic insecticides than when feeding in flowers. Leaf-feeding more easily results in the insects imbibing toxic concentrations of the active ingredient of systemic insecticides. For example, it has been reported that WFT feeding on plant leaves are “suppressed” by thiamethoxam (Flagship) when applied to the soil/growing medium. The water solubility of thiamethoxam is 4.1 g/L or 4100 ppm. However, it is possible that the metabolite — clothianidin — is actually responsible for killing the thrips. Although the water solubility of clothianidin is 0.32 g/L or 327 ppm, the material translocates throughout the entire leaf, potentially exposing thrips to lethal concentrations of the active ingredient.

Systemics Can Be Used As A Contact Spray

Spray applications of systemic insecticides tend to be more effective than soil/growing medium applications because they are being primarily used as contact or translaminar sprays, and not so much for any systemic activity. For example, sprays of acetamiprid (TriStar)* and thiamethoxam (Flagship) have been shown to be effective against WFT nymphs and adults. In our research efficacy trials, we have found that the systemic insecticide dinotefuran (Safari) provides sufficient (greater than 80 percent) mortality of WFT when applied as a foliar spray.

In summary, due to the feeding behavior of the WFT, systemic insecticides, when applied to the soil/growing medium, in general, may be less effective than when applied as foliar sprays. Therefore, it is important to understand that when using systemic insecticides for regulation of xylem- and phloem-feeding insect pests, the use of spray applications of contact or translaminar insecticides will be required to regulate populations of the western flower thrips.

Topics:

Leave a Reply

3 comments on “Control Of Thrips With Systemic Insecticides

  1. I think it is very important that when we are talking about insecticides, esp. systemic types, that we also look at the affects that they have on Colony collapse of Bees CCD…. better, safer application and the possibility of not using some of these products… Also a close look at target areas for which the specific greenhouse crops are to be sold and used, exposing the pesticide to bees.

    1. Definitely agree, Bill. I looked up Flagship for precautions and directions, and I would rather go out and smash the little buggers by hand every day than give Flagship to my plants, because it is toxic to bees as well! As they do their daily work, they get even residue on their bodies, and can kill the whole hive. I’d rather do things the hard way!!!

More From Insect Control...

April 17, 2015

Sakata Seed Uses California Spring Trials Display Plants To Give Back

Sakata Seed America is putting its post-CAST (California Spring Trials) plants and flowers to good use to support events in local California communities of Salinas and Morgan Hill. The plants, along with donations through Sakata's Charitable Giving Program, will support three fun-filled community events that promote healthy lifestyles and support the agricultural industry.

Read More
Hakonochloa macra Aureola v

April 17, 2015

Ornamental Grasses — A Few Thoughts

Grasses have been embraced by growers, landscape architects and retailers, and are an important component in wholesale and resale sales. Allan Armitage shares some popular grasses, one to avoid and a few to use with caution.

Read More
PW_CAST15

April 17, 2015

Allan Armitage’s Favorite Plants From Proven Winners, Syngenta And Danziger

Between visiting California Spring Trial giants like Proven Winners, Syngenta and Danziger, Allan Armitage saw a lot of great plants in one day. Despite the size of the challenge, Dr. Armitage finds a few favorites he thinks you should try.

Read More
Latest Stories

April 11, 2015

Lowe’s Announces Commitment To Phase Out Neonicotinoids…

Home improvement retailer Lowe’s companies announced April 9 that it has committed to eliminate neonicotinoid pesticides from its stores in a gradual phase-out over the next 48 months. In response, horticulture industry associations issued a statement that Lowe’s position is surprising, considering the most recent and positive reports on the state of honeybee health and recent peer reviewed research, and that this is an issue for which sound science must take priority.

Read More
Restricting foliar pesticide applications on blooming plants to early morning or as dusk approaches in the evening reduces direct exposure to bees.

April 10, 2015

10 Steps For Protecting Crops And Bees

Bees stay safe and high quality crops thrive when you use bee-friendly practices designed to help both succeed. Griffin Greenhouse Supply Pro (GGSPro) has been actively discussing bee-friendly pesticide use for years. Based on its current understanding of the science and social factors at play, GGSPro currently recommends these 10 bee-friendly practices.

Read More
As directed by EPA, the bee hazard icon appears in the Directions For Use for each application site for specific use restrictions and instructions to protect bee and other pollinators.

April 8, 2015

AFE To Fund Honey Bee Health Research Focused On Transl…

The American Floral Endowment (AFE) is funding a new research project to examine the health of honey bees on ornamental plants following treatment with neonicotinoids and other systemic insecticides.

Read More

February 17, 2015

A New Look At Biological Control: Can Plants Affect The…

The success of a biological control program depends on a number of factors including quality of natural enemies, timing of release, release rates and environmental conditions. However, what is typically not taken into consideration is how plants can affect the performance of natural enemies, including attack rate and searching ability. Biological control agents work hard to protect plants, but plants have ways to help themselves, too.

Read More

February 1, 2015

New Pest Control Products For Your Toolbox

Add one of these new insecticides to your IPM program for successful pest control.

Read More
IR-4_profile_Feb2015

January 29, 2015

IR-4: A Pest Management Resource For Growers

Almost 40 years ago, IR-4 (Interregional Research Project Number 4) began serving the ornamental horticulture industry, helping to facilitate the registration of pest management tools. IR-4 does this primarily by surveying growers about their pest management issues and then hosting workshops to review survey results and set priorities for the coming years. Most recently, IR-4 coordinated a meeting of researchers and industry members on pollinator health and neonicotinoid chemistries to start a discussion on the needed research. The next step will be to get the outcomes from that workshop out to the public.

Read More

January 28, 2015

Biocontrols 2015 Conference & Tradeshow: Peace Tree…

Lloyd Traven, a speaker at the upcoming Biocontrols 2015 Conference & Tradeshow, was one of the industry’s early adopters of biocontrols in the greenhouse. Traven, owner of Peace Tree Farm, is evangelical about the technology as an effective tool for resistance management, as well as improved plant quality that contributes to a grower’s bottom line.

Read More
Wainwright-web-620x349

January 22, 2015

Quality Control With Biocontrols

Make sure the shipment of beneficials that just arrived is viable and ready to go to work in your greenhouse, nursery, or field. Here are five steps you can take to ensure success with your biocontrols.

Read More
As directed by EPA, the bee hazard icon appears in the Directions For Use for each application site for specific use restrictions and instructions to protect bee and other pollinators.

December 9, 2014

Fact Sheet: The Value Of Neonicotinoids To Turf And Orn…

An extensive study of the diverse turf and ornamental industry (“The Green Industry”) reveals that neonicotinoids are the top-rated products used by professionals to control their most important pests in greenhouses, landscapes, lawns, nurseries and trees.

Read More
As directed by EPA, the bee hazard icon appears in the Directions For Use for each application site for specific use restrictions and instructions to protect bee and other pollinators.

December 9, 2014

New Study Finds Neonicotinoids Are Top-Rated Products F…

According to results of a survey by AgInfomatics, professionals in the turf and ornamental industries fear the loss of neonicotinoid products would reduce the quality of their plants and services, increase costs and negatively impact their ability to manage pest resistance.

Read More

November 21, 2014

Ramped-Up Predatory Mite Production To Benefit Growers

Biological pest control company Beneficial Insectary is now producing both Amblyseius (=Neoseiulus) cucumeris and Stratiolaelaps scimitus (formerly Hypoaspis miles) at its facility in California. Domestic production in the U.S. is now benefiting growers in North America by reducing the transit time of perishable predatory mites between producer and grower.

Read More

November 14, 2014

Skagit Gardens To Eliminate Use Of Neonicotinoid Pestic…

Skagit Gardens, a wholesale grower located outside Mount Vernon, Wash., will eliminate all use of neonicotinoid pesticides beginning in January 2015.

Read More

November 11, 2014

Clarification: White House Recommends Sourcing Insectic…

UPDATE: The Obama Administration's addendum to the Sustainable Practices for Designed Landscapes applies only to federal agencies “implementing landscaping practices on agency-owned or leased land or space.”

Read More

October 27, 2014

New Insecticides Offer Alternatives For Growers

Chemistry advances in insecticides broaden growers’ pest management options, without compromising control.

Read More

October 14, 2014

Pollinator Legislation Could Help Solve One Piece Of Th…

AmericanHort encourages industry members to contact their members of Congress to support legislation that would require federal agencies to take greater action to deal with parasite and disease factors impacting the health of managed bees, specifically focusing on Varroa mites.

Read More

October 7, 2014

New Jersey Green Industry Council Will Host Pollinator …

The New Jersey Green Industry Council's 2014 Pollinator Summit is an event and issue briefing for everyone who works in the green industry, agriculture, or related industries. The event will take place Nov. 11 at the National Conference Center, East Windsor, N.J.

Read More

September 22, 2014

Seattle City Council To Vote On Citywide Ban Of Neonico…

On September 17, a committee of the Seattle City Council endorsed a ban on the purchase and use of neonicotinoid products on city property. The measure includes supportive language for sales and use bans for all use patterns, including plants, seeds or products containing neonicotinoids in the city, and support for a national moratorium on products.

Read More
Gary Mangum

August 12, 2014

What Bell Nursery Learned From Growing Without Neonicot…

Determined to find out firsthand what a ban on neonicotinoid pesticides would mean for growers, Bell Nursery CEO Gary Mangum challenged his team to grow without them. Read to find out about the lessons he learned.

Read More