Control Of Thrips With Systemic Insecticides

WFT on zinnia

One common question asked by greenhouse producers is associated with the effectiveness of systemic insecticides against the western flower thrips, Frankliniella occidentalis. Western flower thrips (WFT) are the most important insect pest of horticultural greenhouse-grown crops worldwide. In order to develop controls, it is essential to understand the feeding behavior of these pests.

Advertisement

WFT have piercing-sucking mouthparts, but they do not feed exclusively in the phloem sieve tubes. Instead, they feed within the mesophyll and epidermal cells of leaf tissues. More specifically, they feed on plants by inserting their tubular stylets into cells and withdrawing the cellular contents. This feeding behavior may inhibit the effectiveness of systemic insecticides against WFT; however, this is dependent on whether they are feeding on leaves or flowers. In addition, the anthophilic (inhabiting flowers) nature of WFT limits their exposure to systemic insecticides for several reasons:

The active ingredient is not readily transported into flower tissues (petals and sepals).

The concentration of active ingredient that is translocated into flower parts may not be sufficient to directly kill the thrips.

Top Articles
What Was New From Sakata, Takii, and Others at California Spring Trials

The active ingredient of a systemic insecticide may degrade faster in flower parts and differences in the transpiration rates between flowers and leaves may result in flowers being less efficient sinks for the active ingredient of systemic insecticides.

Flowers don’t last as long as leaves, so there is less time for systemic insecticides to accumulate compared to the foliage.

Systemic insecticides may not provide fast knockdown to prevent thrips damage to flowers when abundant populations are present.

All of these factors, however, may depend on the systemic insecticide and the associated water solubility, because systemic insecticides with greater water solubility may accumulate in flower parts at concentrations sufficient to kill WFT.

Water Solubility Is Key To Efficacy

Systemic insecticides applied to the soil/growing medium must be water-soluble to some degree in order to allow the dissolved active ingredient to be absorbed by plant roots. Water solubility determines how rapidly the active ingredient is absorbed by roots and translocated throughout plant parts such as leaves and stems. A highly water-soluble systemic insecticide may kill insect pests quickly; however, it may not provide long-term or sufficient residual activity compared to a less water-soluble systemic insecticide. A less water-soluble systemic may persist longer, but may not be as effective unless the rate is adjusted to compensate for the slower mobility.

Table 1 presents the systemic insecticides labeled for use in greenhouse production systems that can be applied to the soil/growing medium, and their corresponding water solubilities.

Table 1. Insecticides with systemic activity, when applied as a drench or granule to soil/growing medium that are commercially available for use in greenhouse production systems including common name (=active ingredient), trade name, and corresponding water solubility.
Common Name Trade Name Water Solubility (ppm)
Acephate  Orthene  79,000
Azadirachtin  Azatrol, Aza-Direct and Molt-X  0.50
Dinotefuran  Safari  39,000
Imidacloprid  Marathon  510
Spirotetramat  Kontos  29
Thiamethoxam  Flagship  4,100
**Acetamiprid (TriStar) is not labeled for soil/growing medium applications. It is only registered for use as foliar or sprench applications. This is why acetamiprid is not included in Table 1.

Here’s one example of how water solubility influences the uptake and efficacy of systemic insecticides. Imidacloprid (Marathon), which has a water solubility of 0.51 g/L or 500 ppm, tends to be less effective against flower- and pollen-feeding insect pests including WFT. Research has shown that acephate, which has a water solubility of 790 g/L or approximately 79,000 ppm, is converted into the metabolite — methamidiphos and actually moves into flowers, protecting them from WFT feeding injury. It may provide systemic protection to flower buds, which allows plants to flower and minimizes feeding injury resulting in good flower quality.

WFT feeding on leaves (both nymphs and adults) tend to be more susceptible to systemic insecticides than when feeding in flowers. Leaf-feeding more easily results in the insects imbibing toxic concentrations of the active ingredient of systemic insecticides. For example, it has been reported that WFT feeding on plant leaves are “suppressed” by thiamethoxam (Flagship) when applied to the soil/growing medium. The water solubility of thiamethoxam is 4.1 g/L or 4100 ppm. However, it is possible that the metabolite — clothianidin — is actually responsible for killing the thrips. Although the water solubility of clothianidin is 0.32 g/L or 327 ppm, the material translocates throughout the entire leaf, potentially exposing thrips to lethal concentrations of the active ingredient.

Systemics Can Be Used As A Contact Spray

Spray applications of systemic insecticides tend to be more effective than soil/growing medium applications because they are being primarily used as contact or translaminar sprays, and not so much for any systemic activity. For example, sprays of acetamiprid (TriStar)* and thiamethoxam (Flagship) have been shown to be effective against WFT nymphs and adults. In our research efficacy trials, we have found that the systemic insecticide dinotefuran (Safari) provides sufficient (greater than 80 percent) mortality of WFT when applied as a foliar spray.

In summary, due to the feeding behavior of the WFT, systemic insecticides, when applied to the soil/growing medium, in general, may be less effective than when applied as foliar sprays. Therefore, it is important to understand that when using systemic insecticides for regulation of xylem- and phloem-feeding insect pests, the use of spray applications of contact or translaminar insecticides will be required to regulate populations of the western flower thrips.

12

Leave a Reply

Avatar for Bill Bolton Bill Bolton says:

I think it is very important that when we are talking about insecticides, esp. systemic types, that we also look at the affects that they have on Colony collapse of Bees CCD…. better, safer application and the possibility of not using some of these products… Also a close look at target areas for which the specific greenhouse crops are to be sold and used, exposing the pesticide to bees.

Avatar for Zephon Rae Zephon Rae says:

Definitely agree, Bill. I looked up Flagship for precautions and directions, and I would rather go out and smash the little buggers by hand every day than give Flagship to my plants, because it is toxic to bees as well! As they do their daily work, they get even residue on their bodies, and can kill the whole hive. I’d rather do things the hard way!!!

Avatar for Roy M Roy M says:

Hope you were not surprised to find that an insecticide (a substance used to kill insects) actually can kill bees (insects). Luckily, if one follows the directions on the pesticide label, using the correct rates and timing, he or she will not be hurting bees. Careful with website information on the subject… lots of faulty and/or biased information.

Avatar for Jose Paez Jose Paez says:

Proper use is key. Lot of bad publicity and misinformation has been damaging the greenhouse industry. The question here is. If banned for use. What other chemical we can use that is no threatening to mammals including us? I am up to a professional applicator responsibility and accountability. More training and licensing needed for any application.

Avatar for onion thrips onion thrips says:

Onion thrips control insecticide name batao

Avatar for Greg Brown Greg Brown says:

Thank you Raymond.Good sound information .I have commercial greenhouses .I used these products for years.I have bee hives close to my greenhouses and they flourish.

Avatar for Novath Novath says:

which campany provide Batao?

Avatar for Novath Novath says:

which insecticide I can use to control onions thrips?

Avatar for Sathyan T Sathyan T says:

dimethoate 30 EC @ 1.5 ml/lit or spinosad 45 SC@ 0.2 ml/lit

Avatar for Madhu Madhu says:

Which pesticide r better to control sevier thrips in gerbera

Avatar for camil Bernard camil Bernard says:

I am from Sri Lanka and I have a problem due to attack from thrips to my gerbera plants which were cultivated in my net house and also to flowers.Any body pl. Help me to avoid from this problem.