Liming Requirements And pH Modification For Pine Wood Chips As An Alternative To Perlite

In our last article (July 2014 issue), we discussed our research findings evaluating fertility requirements of bedding plants grown in a substrate amended with 20 percent pine wood chip (PWC) aggregates. To continue and finish with our theme in highlighting the use of PWC aggregates (Slideshow Figure 1) as an alternative to replace perlite in greenhouse substrates (Slideshow Figure 2), this article will focus on evaluating the liming requirements and pH modification.



Many growers express a level of uncertainty concerning wood-based substrates or wood components as an alternative for peat and pine bark. Among the many questions, the most common are those regarding requirements of pre-plant limestone addition and recommended rates for pH adjustment for optimal plant growth.

Initial pH Plays A Role In Using Pine Wood Chips

Managing substrate pH is one of the many challenges during production of greenhouse crops. To address this, growers must first be aware of the initial pH of the intended substrate or substrate components. For example, peat moss is naturally acidic with a pH 4.0 to 4.5, whereas investigators found 100 percent pine wood-based substrates to have a pH range of 5.0 to 6.4 (depending on the season of harvest among other factors). Knowing the initial substrate pH will help determine if the standard practice of adjusting (raising) pH of the formulated substrates with limestone to a desirable pH range (5.4 to 6.4 for most greenhouse crops) is needed. If so, what is the recommended rate when PWC is substituted for perlite in a peat-based mix?

At NC State, we have developed a wood processing technique that produces blockular and non-fibrous PWC aggregates as a perlite replacement. We investigated peat-based substrates formulated with 10 percent, 20 percent or 30 percent perlite or PWC aggregates. However, based on conversations with growers to determine the most common substrate formulation, we will present and discuss our findings of the substrates amended with either 20 percent perlite or PWC aggregates (Slideshow Figure 3).

Determining The Right Balance For Adding Limestone

We prepared our peat-based substrates by amending either 20 percent perlite or PWC aggregates (by volume) and determined initial substrate pH using the saturated media extract method (SME). Substrates were then amended with dolomitic limestone at rates of 0, 3, 6, 9, 12 or 15 lbs∙yd3 and ‘Moonsong Deep Orange’ African marigold plugs were transplanted into the prepared substrates (Slideshow Figure 4). Using the Pour-Thru method, we extracted and measured substrate solution pH and electrical conductivity (EC) with a handheld Hanna pH meter on a weekly basis for five weeks. A final growth index (GI) [(height + widest width + perpendicular width) ÷ 3] and plant shoot and root dry mass were determined.

At zero weeks after transplant (WAT), substrate pH for both 20 percent perlite and PWC-amended substrates were similar at the 0 lbs∙yd3 lime rate. Over time (1 to 4 WAT), substrate pH increased as lime rate increased (Slideshow Figures 5 and 6). For both substrates, the addition of 0 and 3 lbs∙yd3 of lime did not adjust substrate pH to the recommended pH range of 6.0 to 6.5 for optimal marigold growth (Whipker, et al., 2000). As a result of low substrate pH, visual symptoms of iron toxicity were observed. To increase substrate pH to the recommended pH range for marigolds, lime rates of 9 to 15 lbs∙yd3 were required. Therefore, substrates containing 20 percent perlite or PWC aggregates required similar rates of lime.

For both 20 percent perlite and PWC-amended substrates, marigold GI increased with increasing lime rate up to 9 lbs∙yd3 and declined thereafter. Marigold GI were similar between both substrates and among all lime rates with the exception of the 6 lbs∙yd3 lime rate, where GI of plants grown in the 20 percent PWC-amended substrate were 2.9 cm larger than those grown in the perlite amended substrate (Slideshow Figure 7). Similarly, shoot dry mass for both substrates were similar among all lime rates with the exception of the 6 and 9 lbs∙yd3 lime rate, where the average shoot dry mass of plants grown in the 20 percent PWC-amended substrate were 0.85 and 1.05 g greater, respectively, compared to those grown in the 20 percent perlite-amended substrate (Slideshow Figure 8). Root dry mass of marigold plants were similar between both substrates and among all lime rates, with the exception of 9 lbs∙yd3 rate, where root dry mass of plants grown in the 20 percent PWC-amended substrate were 0.55 g larger, compared to those plants grown in the 20 percent perlite-amended substrate (Slideshow Figure 9).

Know Your Substrate pH And Understand Plant Requirements

Based on these results, PWC aggregates can be a suitable alternative for perlite in greenhouse substrates at 20 percent (by volume) for the production of marigolds (Slideshow Figure 10).

As a means to determine recommended lime rates for PWC-amended substrates, this study has demonstrated the variation in substrate pH associated with lime rates and plant growth. Therefore, the importance of understanding greenhouse substrates, their components and the proportion in which they are formulated, is vital in regard to limestone amendment and the increased interest of using alternatives.

Acknowledging the initial pH of substrates and substrate components should be considered before formulating substrates for greenhouse crop production. The common practice of amending a standard rate of lime to a substrate can impact durability of substrate pH and crop performance. It is recommended here to initially test substrate components before amending substrates with pre-plant limestone application rates and PWC aggregates.

For commercial greenhouse production, changes in cultural practices are not needed when substituting perlite with PWC aggregates. Understanding plant requirements is vital in terms of plant quality. As observed in this study, iron toxicity related to low substrate pH affected plant growth and visual quality. It is recommended for substrates containing 20 percent PWC aggregates (by volume) to be amended with dolomitic limestone rates of 6 to 9 lbs∙yd3 for optimal marigold growth and quality. Overall, PWC can be used in production of greenhouse crops without changing cultural practices and offers greenhouse growers in the United States a regional and readily available alternative to perlite.


Jackson, B.E., R.D. Wright, and N. Gruda. 2009b. Container medium pH in a pine tree substrate amended with peatmoss and dolomitic limestone affects plant Growth. HortScience 44:1983-1987.

Whipker, B.E., J.M. Dole, I.J. Cavin, J.L. Gibson, W.C. Fonteno, P.V. Nelson, D.S. Pitchey, and D.A. Bailey. 2001. Plant root zone management. N.C. Comm. Flower Growers’ Assn., Raleigh, N.C

Other pine wood chip articles to explore:
The Processing And Properties Of Pine Wood Chips
How Pine Wood Chips In Substrates Affect Plant Growth Regulators
Fertilization Requirements For Pine Wood Chips As An Alternative To Perlite


Leave a Reply

More From Crop Inputs...
Colorado State University 2015 Container Field Trials

November 29, 2015

2015 Colorado State University (Fort Collins, Colo.) Field Trials Results

See the 2015 field trials results (includes photo gallery) for Colorado State University in Fort Collins, Colo.

Read More
Coleus 'Colorblaze Velveteen' (2015 University of Tennessee Field Trials)

November 28, 2015

2015 University of Tennessee Gardens (Knoxville and Jackson, Tenn.) Field Trials Results

See the 2015 field trials results (includes photo gallery) for University of Tennessee Gardens in Knoxville and Jackson, Tenn.

Read More
Feature Image Cob 700 (NewLux)

November 28, 2015

16 LED Lighting Solutions For Your Greenhouse

Narrowing in on the right LED lighting product often comes down to considering your specific crop needs and growing requirements to see what works best for your application. Here are 15 LED products to take into account when choosing the right fit for your greenhouse.

Read More
Latest Stories
Stockosorb Crystals_with water Agriculture leaf (Evonick)

November 21, 2015

9 Sustainable Growing Media Products For Superior Green…

Manufacturers are delivering new growing media products to help growers attempt to minimize their footprint without sacrificing quality. Here are nine new products to consider for your greenhouse operation.

Read More
Suzanne Wainwright-Evans

November 16, 2015

Real-World Biocontrols Trends From The Buglady

During ,em>Greenhouse Grower's Top 100 Breakfast at Cultivate'15, Suzanne Wainwright-Evans of Buglady Consulting discussed trends in biocontrols, including what she has seen from breeders, growers and even public gardens.

Read More

October 13, 2015

Bayer CropScience And OHP To End Marketing Partnership …

The move allows Bayer to market its ornamental products directly to greenhouses and nurseries, although OHP will still service a limited line of Bayer products.

Read More
RISE 2015 Governing Board

October 13, 2015

RISE Annual Meeting Celebrates 25 Years of Industry Adv…

The annual meeting for RISE (Responsible Industry for a Sound Environment), held the last week of September in Orlando, was more than just presentations, awards and the election of new officers. It was also a celebration of 25 years as a leading advocate for the specialty pesticide and fertilizer industries.

Read More

October 9, 2015

New Biochemical Miticide Is Designed To Combat Varroa M…

EPA recently registered Potassium Salts of Hops Beta Acids (K-HBAs), which is intended to fit into a rotation program to battle resistance.

Read More

October 7, 2015

Ball FloraPlant Eliminates Neonicotinoid Use On Its Off…

Ball FloraPlant has announced its offshore cuttings farms did not use neonicotinoid-based pest management chemicals during its spring crop production last shipping season, and will continue to be neonic free this year. Instead, the company and its greenhouse managers have relied on alternative means to supply insect-free cuttings to its global customer base.

Read More
Nemasys And Millenium Beneficial Nematodes from BASFm_Nematodes

October 7, 2015

How BASF’s UK Biological Production Facility Expa…

BASF has expanded its biologicals production facility in Littlehampton, UK. The new capacity increases the company’s ability to double the production of beneficial nematodes and inoculants.

Read More

September 25, 2015

Canadian Sphagnum Peat Moss Association Announces Early…

According to an August 31 survey of members of the Canadian Sphagnum Peat Moss Association (CSPMA), whose members represent approximately 95 percent of all North American peat production, the peat harvest season has been adequate, but not strong, and could cause shortages and potentially higher transportation costs. Down To The Dirty Details The survey inquired about the status of CSPMA members’ 2015 Actual Harvest (including an estimate of what can be expected to be harvested for the remainder of the season) as a percentage of their 2015 Expected Harvest. The lack of a strong harvest overall may challenge peat availability. The Prairie Provinces (Manitoba 98 percent, Saskatchewan 88 percent and Alberta 94 percent), experienced early favorable weather conditions and a strong start to the year. This helped to minimize periodic, negative, weather-related conditions during the balance of the harvest season, and the harvest numbers are close to achieving the expected amounts. […]

Read More

September 23, 2015

New Crop Protection Products And Label Updates

Here are some of the most recent products released and label updates for crop protection agents in the greenhouse and nursery market. Fame Fungicides (FMC Corp.) FMC Corp. has introduce Fame fungicides, a family of FRAC 11 group (Strobilurin) products that delivers fast-acting, patented fluoxastrobin protection against major soil and foliar diseases. Rainfast in 15 minutes, Fame fungicides can be used on most greenhouse and nursery plants and provide fast foliar and root uptake. “Proven by university research, Fame fungicides offer fluoxastrobin action, which ensures a high degree of systemic activity to provide very rapid disease protection and stop further growth of established disease,” says Naimur Rahman, strategy and fungicide marketing product manager for FMC. The Fame fungicide family includes: • Fame SC: a suspension concentrate fungicide containing fluoxastrobin that controls major diseases, including anthracnose, downy mildew, powdery mildew, scab and leaf spot. It provides rapid foliar and root uptake […]

Read More
Offshore farm profiles Dummen Orange Las Mercedes Solanaceas GH

September 8, 2015

Dümmen Orange Implementing Consistent Standards On All …

Owning and operating several locations can be a challenge in maintaining consistent quality and cleanliness across the board. This is true of both breeders and growers. But those who do it right have invested in technology and practices that ensure that plant quality matches, no matter where their plants are shipped from. That’s the goal for Dümmen Orange. Now the world’s largest producer of unrooted cuttings, the company has a combined 150 hectares or 370 acres of production space worldwide, dedicated to cuttings production. Recent acquisitions of product portfolios, both this year and in the past few, has raised the company’s cuttings production expectation to more than 1.4 billion, including 350 million in North America. It has farms all over the world (see the 2015 Top Cuttings Producers ranking to see where), and produces cuttings for its own genetics, as well as collaborating with more than 30 third-party breeders across all […]

Read More
Bill Lewis grower manager at Delray Plants

August 31, 2015

Delray Plants Takes Preventative Approach To Pest Contr…

Trying to control pests effectively on a wide variety of crops is a major undertaking. Delray Plants in Venus, Fla., has been using biological controls as a part of its pest control program for more than 10 years. It operates 300 acres, which includes covered structures and 7 acres of outdoor field production.

Read More
Bob’s Market and Greenhouses’ Ron Morris pours Stockosorb into the hopper for distribution on the conveyor line

August 13, 2015

How Bob’s Market And Greenhouses Improved Growing…

My father started our company 45 years ago growing bedding plants, mainly early season production and finished plants for our West Virginia market. It was in the early 1980s that we started growing earlier spring production and shipping materials to southern markets, and by the late 1980s, we also produced pansies for fall. We started using hydrogels when they first came on the market in the early 1990s and found that they really helped with our production by keeping plants healthier for these new markets. Over the years, we’ve grown to be a large young plant producer and have a sizable business growing finished plants in cell packs, 4 1/2-inch pots, 6-inch pots, gallon containers, hanging baskets, multiple sizes of large containers and large baskets for municipal use. Creating The Ideal Soil Mix With our old system, it took several workers to mix pre-made soil with slow-release fertilizers in cement […]

Read More
Fertilizer Rates Feature Image

August 12, 2015

Selecting Fertilizer Rates For Several Spring Bedding P…

Fertilizing bedding plants can be difficult due to the differing needs of the large variety of plants that we grow. Many operations do not grow enough of any one crop to cater the fertilizer specifically for each crop. Therefore, grouping crops with similar fertilizer requirements and having two to three fertilizer strengths available is a practical way to ensure plants are getting the fertilizer they need. With many new plant varieties on the market, we wanted to conduct a trial at Cornell University to determine best fertilizer rates for several common bedding plant crops. 22 Bedding Plants Studied To Establish Fertilizer Rates Plugs and rooted liners of 22 crops (Table 1) were transplanted into 4-inch (500 mL volume) round pots with a commercial peat/perlite based substrate. The plants were grown in a glass greenhouse at Cornell University during the spring season at a spacing of one plant per square foot. Heating set […]

Read More
Feature image The Aphid Guard Aphid Banker Plant, coming soon to the market, supports beneficial insect populations.

June 21, 2015

The Latest In Crop Protection

Protecting your plants from the latest threats is no easy task, but new product lines promise to safely and effectively eliminate a wide range of pests and diseases, without harming your employees or the environment.

Read More
Bee On Flower

June 18, 2015

Pest Management And Marketing Strategies For Bee-Friend…

Michigan State University Extension shares pest management practices to produce plants that are safe for pollinators and marketing strategies for clearing up confusion about bee-friendly plants.

Read More

June 13, 2015

UMASS Fertilizer Trials Recommend Nature’s Source Organ…

In a recent online fact-sheet at its Extension website, the UMass Amherst Center for Agriculture, Food and the Environment lists Nature’s Source Organic Plant Food 3-1-1 as “the best liquid organic fertilizer,” according to Dr. Douglas Cox, Stockbridge School of Agriculture. It is called-out by the Extension after a number of years of studying the use of organic fertilizers for growing commercial greenhouse crops. The trials evaluated traditional water soluble and granular slow-release chemical fertilizers. Dr. Cox recommends Nature’s Source Organic Plant Food 3-1-1 as a liquid fertilizer that is readily available, cost effective, OMRI-listed and with good label directions for greenhouses. He also mentions the ease-of-use in how it mixes well with water and can pass fertilizer injectors. “Nature’s Source is currently the best liquid organic fertilizer,” Cox wrote in his article “Organic Fertilizers – Thoughts on Using Liquid Organic Fertilizers for Greenhouse Plants,” “I have seen no foliar chlorosis yet with this fertilizer. Nature’s source is widely available and a great […]

Read More

June 10, 2015

BASF’s Sultan Miticide Receives California Regist…

BASF Sultan miticide recently received registration in California, giving ornamental growers a new rapid, targeted mode of action for mite control. Sultan miticide, with active ingredient cyflumetofen, offers ornamental growers targeted knockdown of all life stages of tetranychid mites, with long residual control. It has practically no toxicity to beneficial insects, including predatory mites and pollinators. Sultan miticide offers a new mode of action to combat cross-resistance with other commercial miticides, and is compatible with integrated pest management programs (IPM). “The long-awaited California registration of Sultan miticide is exciting news. Greenhouse, nursery and landscape professionals in the state now have a new class of chemistry that gives them fast control over all life stages of plant-damaging mite populations,” says Joe Lara, senior product manager for BASF. “Sultan miticide now provides California growers with a much needed new first choice for miticide resistance management programs that won’t disrupt populations of beneficial […]

Read More
Bee on a Sedum

May 27, 2015

Industry Associations State Their Support Of National P…

AmericanHort, Society of American Florists, American Floral Endowment and Horticultural Research Institute joined together to embrace key aspects of the federal government’s recently announced National Strategy for the Protection of Honey Bees and Other Pollinators. The long-awaited strategy has three major goals: reducing honey bee colony losses, increasing Monarch butterfly populations, and restoring or enhancing millions of acres of land as pollinator habitat through public and private action. According to the statement, the associations are studying the details, but they agree that the overall approach appears balanced and mostly sensible. The rest of the statement reads as follows: “The national strategy’s overarching goals dovetail well with the focus of the ongoing Horticulture Industry Bee and Pollinator Stewardship Program. Under that initiative, we have directly funded several priority research projects, and collaborated on additional research funded by others, to provide critical scientifically sound guidance for professional horticulturists. We are developing a grower […]

Read More
[gravityform id="35" title="false" description="false"]