Protecting Bees Through Informed Pesticide Choices

Bee Pollination, Abiotic - Zack Brubaker
Abiotic bee pollination
Photo by Zack Brubaker

Producing crops to meet consumer quality demands means that growers may use chemicals to control pests and diseases. Some of these products may be harmful to bees if used incorrectly. To demonstrate good environmental stewardship, growers need an understanding of the issues presenting risks to bees and of strategies to minimize the risks. Knowing where to find key product information and how to interpret it can help growers make sound choices regarding the application of effective products.

The Importance Of Pollinators To Our Food Supply

Insect pollinators, including bees, are important to our food supply system, both in terms of economics and of production. Pollination by bees alone contributes to more than $15 billion in crop value annually [1]. Many crops require biological pollination, including fruit, nut and vegetable crops. Undoubtedly, our grocery store shelves would look quite different without bees pollinating our crops.

Understanding Colony Collapse Disorder

Concern about bee health is widely publicized, due in large part to our dependence on bee pollination for food production. Currently, much research and attention is focused on Colony Collapse Disorder (CCD). CCD describes a syndrome in which an unexpected, sudden loss of overwintering adult bees occurs in a mature colony, though the queen and brood generally survive [1]. These colonies are drastically weakened by the loss of the adults. Not all colony losses are attributed to CCD. CCD is diagnosed when colony loss is noted in the absence of dead bees, implying that the bees did not return to the hive [3].

Multiple factors contribute to CCD, though the exact mechanism is not well understood. Among the factors believed to play a role are:

  • Parasites: The Varroa destructor mite is found in association with CCD hives and is considered to be a serious threat to honeybee health.
  • Pathogens: CCD hives have greater numbers of pathogens present [4], including Nosema fungal infections. Viral infections are also correlated with CCD, including systemic Tomato Ring Spot Virus [5].
  • Varroa/Nosema disease complex: Interactions between parasite and pathogen are suspected [6].
  • Hive management: Concerns range from strong reductions in genetic diversity to the impact of long-distance transport of hives for pollination services.
  • Pesticide toxicity: In previous decades, concern focused on risks from the use of organophosphates and other classes of pesticides. Recent concern has focused on the neonicotinoid class of chemicals.
  • Habitat loss: Expansion of agriculture, changing agricultural practices (elimination of wind rows and buffer strips) and housing has led to a reduction in native and wild areas, which serve as rich sources of food for foraging bees.
  • Hive nutrition: Nutrition is often provided in the form of commercial foods.
Honeybees With a Queen - Matt Libhart
Honeybee hive with a queen
Photo by Matt Libhart

Understanding Pesticide Toxicity

Some pesticides are known to be harmful to bees and should be used in a way that minimizes exposure. Labels for these products include bee hazard statements. Current EPA labeling describes bee toxicity by degree, using the following terms: low toxicity, toxic, highly toxic and very highly toxic.

Harmful exposure occurs in several ways. Some products are harmful upon direct exposure; the exposure risk occurs at the time of application. Other products are harmful through residual exposure; the exposure risk occurs for some time after application. Some products present both direct and residual risks. Remember that bees are often attracted to weeds blooming in the vicinity of the treated crops; product applied to weeds may also present an exposure risk to bees.

Current EPA labeling addresses exposure routes by describing when to avoid application. For products with direct exposure risk, bee hazard statements indicate that the product should not be applied when bees are actively visiting or actively foraging in the treatment area. For products with residual exposure risk, the label will indicated that the product should not be applied when bees are visiting or foraging in the treatment area. Note that the use of the term “actively” is the key word that indicates a direct exposure risk. Growers are strongly encouraged to thoroughly read and follow all product label instructions.

It’s worth noting that some application methods (e.g., granular) and some product classes (e.g., fungicides and surfactants) are not currently subject to bee hazard evaluation by the EPA. Therefore, the absence of bee toxicity or hazard language on a product label should not be interpreted as a lack of risk. Consult your supplier to address specific concerns.

Understanding Pollinator Foraging Behavior

For most bees, including commercial honeybees, foraging behavior follows a predictable, daily pattern [7]. Feeding starts just before or very close to sunrise, peaking in late morning. A second activity peak may occur in the early afternoon. Foraging is greatly diminished by early evening and essentially non-existent at night [7]. Bees tend to collect pollen in the morning and nectar throughout the day. Bumble bees are active later into the afternoon than honeybees.

Foraging behavior of bees is strongly tied to temperature and weather. Beekeepers view 55˚F as the minimum temperature at which foraging will occur [8]. Bumble bees have a wider temperature range, with potential for foraging as low as 47˚F to 50˚F. Bees will continue to forage under light rain and drizzle, though winds of 10 to 15 mph will slow activity.

Putting The Information To Work

Not all pesticides present a risk to bees and other pollinators. When the product of choice does present a risk, steps should be taken to minimize that exposure risk.

Responsible application can be achieved by considering the following points:

  • Review product labels for a full understanding of the direct and residual toxicity of selected pesticides to pollinators.
  • Plan applications to minimize residual exposure.
    o Select products with lower toxicity and residual exposure risk for outdoor applications.
    o Avoid outdoor application of toxic, highly toxic and very highly toxic products with residual risk exceeding 12 hours to crops when flowers are open and bees may visit the area.
    o Avoid application of toxic, highly toxic and very highly toxic products with residual risk if the crop will come into bloom outdoors within the residual risk period.
  • Plan applications to minimize direct exposure.
    o Conduct outdoor pesticide application as late in the day as possible, preferably in the early evening.
    o Alternatively, outdoor applications could be made when temperatures are expected to remain below 50˚F for the entire application period.
  • In all cases of outdoor application, a visual check for pollinator presence should be performed.
  • Avoid application to nearby, flowering, non-crop plants (including weeds).
  • Provide a 48-hour courtesy notification to area beekeepers regarding your application plans and measures taken to avoid toxic exposures (direct and residual).

This information was first published as a GGSPro technical bulletin on February 11, 2014.

References:

  1. Honey Bees and Colony Collapse Disorder. USDA, ARS. Web. 30 January 2014.
  2. Protecting Pollinators: Why and How Pesticide Applicators Can Help Them. North American Pollinator Protection Campaign. 2010.
  3. USDA. 2012. Colony Collapse Disorder Progress Report.
  4. Cornman RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, et al. (2012) Pathogen Webs in Collapsing Honey Bee Colonies. PLoS ONE 7(8): e43562. doi:10.1371/journal.pone.0043562
  5. Ji Lian Li, R. Scott Cornman, Jay D. Evans, et al. 2014. Systemic Spread and Propagation of a Plant-Pathogenic Virus in European Honeybees, Apis mellifera. mBio 5(1): e00898-13.doi:10.1128/mBio.00898-13.
  6. vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, et al. (2009) Colony Collapse Disorder: A Descriptive Study. PLoS ONE 4(8): e6481.doi:10.1371/journal.pone.0006481
  7. Wilde, J., Suida, M., Bratkowski, J. 2003. Pollen collection by 3 subspecies of honeybee, Apis mellifera L. Acta Biol. Univ. Daugavp., 3(2):101-106.
  8. Mussen, E. Honey Bees and Agricultural Sprays. Almond Board of California. Web. 30 January 2014.
Topics: , ,

Leave a Reply

More From Crop Inputs...
Bees And Pesticides

August 23, 2016

Studies Offer Conflicting Views On Neonic Effect On Bee Health

How much exposure to neonicotinoids do bees need before their health becomes affected? That’s the question two research teams look to answer.

Read More
Chrysanthemum Aphid

August 22, 2016

How To ID And Manage Black Aphids In Chrysanthemums

Growers in Michigan have recently been reporting a higher presence of this pest. Here are some tips on how to control it.

Read More
Cannabis Crop Protection

August 22, 2016

Cannabis Group Stays Focused On Consistent Standards For Crop Protection

The Foundation of Cannabis Unified Standards (FOCUS), is an independent, third-party, not-for-profit organization, is in the process of developing cannabis-specific standards for everything from cultivation and extraction to packaging and retail.

Read More
Latest Stories
Bees And Pesticides

August 23, 2016

Studies Offer Conflicting Views On Neonic Effect On Bee…

How much exposure to neonicotinoids do bees need before their health becomes affected? That’s the question two research teams look to answer.

Read More
Chrysanthemum Aphid

August 22, 2016

How To ID And Manage Black Aphids In Chrysanthemums

Growers in Michigan have recently been reporting a higher presence of this pest. Here are some tips on how to control it.

Read More
Cannabis Crop Protection

August 22, 2016

Cannabis Group Stays Focused On Consistent Standards Fo…

The Foundation of Cannabis Unified Standards (FOCUS), is an independent, third-party, not-for-profit organization, is in the process of developing cannabis-specific standards for everything from cultivation and extraction to packaging and retail.

Read More
Leaf Septoria In Cannabis

August 21, 2016

Three Diseases To Watch For In Cannabis Production

The development of root rot, powdery mildew, and leaf septoria can damage cannabis to the point of complete crop loss.

Read More
Greenhouse Whitefly

August 18, 2016

Vestaron Planning For More Research And Development Of …

On the heels of launching Spear-T, its first bioinsecticide, Vestaron has received additional financing that will be used to develop new products with new modes of action.

Read More
BioWorks Mycotrol

August 17, 2016

New Organic Mycoinsecticide From BioWorks Now Registere…

BioWorks’ Mycotrol can be used to manage whitefly, thrips, aphids, and other insects in greenhouses and nurseries.

Read More
Downy mildew lesions on light coleus cultivars feature

August 12, 2016

How You Can Control Downy Mildew In Coleus, Roses, And …

Downy mildew diseases are potentially devastating to ornamental crops and at the very least can cause unsightly damage. Check out the latest research and recommendations for preventing it.

Read More
Jen Browning BASF

August 4, 2016

Horticulturist And Entomologist Jen Browning To Speak A…

Browning will discuss the use of nematodes in managing pests in greenhouses and nurseries.

Read More
Poinsettia, Heavy Whitefly Infestation -Lower Leaves, Insect - Feature

August 3, 2016

Tips For Successful Late-Season Whitefly Control

Managing late-season whiteflies successfully on poinsettia requires preventative measures put in to action early in the production cycle.

Read More
Cannabis Crop Protection

July 28, 2016

Solving The Cannabis Crop Protection Problem

A largely unregulated sector of the industry, state departments of agriculture, biocontrols companies, and other industry pros are dedicated to helping growers make the right pesticide decisions for their operations.

Read More
Aphids On Older Leaves

July 25, 2016

How You Can Stop Aphids By Understanding Their Interact…

Knowing which aphids target which crops and how aphids colonize and move on plants goes a long way toward setting up an effective management plan.

Read More
BASF Orkestra Intrinsic

June 21, 2016

New Mode Of Action From BASF Offers Deeper Disease Cont…

When it comes to disease control, you need all the help you can get. BASF recently hosted growers, Extension personnel, and trade media to present its newest fungicide with two active ingredients, offering dual modes of action.

Read More
Nematodes-feature

June 4, 2016

New Biocontrols Provide Effective Pest Control In Green…

Biological chemistry manufacturers have introduced several new products recently that offer a range of insect and disease management options. Here’s a look at some of them.

Read More
Whitefly

June 2, 2016

Breaking News: Florida Growers Reporting Major Whitefly…

Reports have come from the Florida Keys to Palm Beach County that whitefly populations in landscapes are reaching unprecedented levels and are not responding to pesticide applications. Biotype-Q has been found in four different communities. University of Florida/Institute of Food and Agricultural Science researchers are working with USDA-APHIS, USDA-ARS, the Florida Department of Agriculture, and growers and landscape professionals to manage the developing problem.

Read More
Triathlon BA container shot

May 24, 2016

OHP’s Triathlon Biofungicide Now Listed By The Organic …

Triathlon BA is a broad-spectrum preventative biofungicide that provides control of many foliar and soilborne diseases in ornamentals and herbs.

Read More
Two-spotted spider mites, adults and eggs

May 11, 2016

SePRO Launches Summer Insecticide Management Program Fo…

The program is designed to help growers use SePRO’s insect management tools to prevent plant damage from a variety of pests.

Read More
Small Aphid Colony on Calibrachoa

May 2, 2016

How To Stop Aphids In The Greenhouse

When untreated, aphids damage ornamental crops and act as vectors for disease. Integrated Pest Management combined with vigilant scouting can help you stay ahead of the problem.

Read More
Cicada (Greg Hoover, Penn State)

April 26, 2016

Cicadas Set To Emerge In Several Eastern States This Sp…

While there’s no immediate cause for alarm, experts say the cicada’s egg-laying process can damage woody ornamentals and make them vulnerable to diseases.

Read More
[gravityform id="35" title="false" description="false"]