Test Media pH And EC With The 2:1 Technique, Pour-Through Method And Saturated Media Extract Method

Combination pH and EC meter. Photo courtesy of Hanna Instruments
Combination pH and EC meter. Photo courtesy of Hanna Instruments

The chemical properties of the media, such as pH and electrical conductivity (EC), have the biggest effect on nutrient availability. Testing labs can provide growers with media pH and EC, as well as water alkalinity readings. Growers can also purchase meters in order to perform on-demand testing on their own. Fertilizer and/or acid-injection programs are then based on the information learned from these tests.

Alkalinity is the key parameter in understanding what your water will do to your media pH over time. Alkalinity is a measure of the buffering capacity of water to neutralize acids. Buffering is an indication of how resistant water is to pH change. The higher the alkalinity, the more upward pressure the water will put on media pH, all other factors being equal. Ideally, alkalinity for container-grown crops falls in the range of 80 to 120 ppm, while plug producers generally are looking for values of 50 to 80 ppm. Water quality should be tested at least once per year.

The most practical and economical way to eliminate high alkalinity in water is to neutralize it with acid. Acid injection is recommended for alkalinity levels higher than 150 ppm. Use caution when handling acid, protecting your skin and eyes from spills or splashes. Always add acid to water and never the reverse to avoid a potentially dangerous chemical reaction. Consult your supplier before beginning an acid-injection program. In cases of borderline high alkalinity, fertilizers can sometimes be used to make the adjustment, such as the Everiss pHLow formulations.

Media pH determines the availability of essential plant nutrients in the growing media, especially the micronutrients. With the exception of molybdenum, most micronutrients are more readily available at a lower media pH. A good range, in most cases, is 5.3 to 6.0. Media pH can also influence plant diseases. It is known that thielaviopsis (black root rot) can be inhibited at pH lower than 5.8, and fusarium can be inhibited at pH higher than 6.5.

Soluble salts in irrigation water are measured by EC and are usually expressed in horticulture using the following units: mS/cm or mmhos/cm. Irrigation water with an EC of greater than 1.0 may be problematic, as it can lead to a buildup of soluble salts in the growing media. Media EC (soluble salts) indicates how much total fertilizer is in the growing media. Crops vary in their tolerance of soluble salts in the media. High EC levels can damage plant roots and lead to root-rot outbreaks, while low EC values indicate the crop may be underfed. Fertilizer manufacturers provide a known EC value per 100 ppm of fertilizer on the bag. With this information, growers can use an EC meter to verify the ppm N delivered by their injectors.

The Testing Methods

The importance of tracking your media pH and EC on a graph is frequently emphasized but, unfortunately, not a consistent greenhouse management practice. You don’t want to wait until a crop displays symptoms of a nutrient toxicity or deficiency to begin tracking this information. A variety of meters are available to perform this testing. Three common methods are used to test media pH and EC: the 2:1 Technique, the Pour-Thru Method and the Saturated Media Extract (SME).

A minimum of six to 10 samples is needed from a crop to give a representative sample. The person responsible for taking samples needs to be consistent from sample to sample. Keeping detailed records concerning sampling done before or after fertilization avoids significant differences in pH and EC readings. For the greatest accuracy, draw samples from an area approximately halfway down the root ball. The volume of media needed for sampling for 4-inch and larger pots is about a tablespoon per pot, or a pinch, in toward the center of the pot. Pool these samples together to make the collective sample. Fill the measuring cup at approximately the same level of compaction that is found in the pots being tested. For plugs and smaller cells, the Squeeze Method, developed by NC State University, is recommended. Consult your supplier for details.

2:1 Technique: This method is quickly and easily done. The following materials will be needed before you begin sampling: distilled water, measuring cup, meter(s) that measure EC and pH, and a glass or plastic container. Two parts distilled water are mixed with one part media. Easy quantities to work with would be 1 cup of distilled water and 1/2 cup of media. Stir vigorously for a few minutes and then let it sit for one to four hours before taking your reading. Use meter(s) to test water on the top after particles settle out. If the meter used requires filtration, coffee filters or cheesecloth can be used. Clean equipment after use and store properly.

Pour-Thru Method: This method has an advantage over the other methods in that no media needs to be collected. Irrigate the crop thoroughly to saturation and wait one hour before testing. Place a clean saucer under the pot to collect leachate. Distilled water needs to be applied to each pot to yield 50 ml (1.7oz) of leachate. A chart is available from the NCSU Floriculture website as a guide to determine the amount of water needed to obtain the 50 ml of extract for different container sizes. Collect the leachate, 50 ml, for your readings. Using your calibrated meter, test extracts as soon as possible, within two hours, as the pH reading can change over time.

Saturated Media Extract Method: This method is more accurate because it provides a more exact representation of field conditions but is more time consuming. Media samples are collected and put into a glass or plastic container. Slowly stir in distilled water until the media takes on a paste consistency with a little moisture glistening on the surface. Let stand for 60 minutes. Filter and then use your meter(s) to test the leachate for pH and EC.

When comparing test results performed by a commercial lab that uses a SME method, comparable 2:1 test results will be 1/2 to 1/3 of those reported by the lab. Prepared by Dr. Douglas Cox at UMass, this chart compares EC results from three methods of media testing.

 

1:2SMEPour ThruIndication
EC values associated by media test method
0 to 0.030 to 0.80 to 1.0Very low
0.3 to 0.80.8 to 2.01.0 to 2.6Low
0.8 to 1.32.0 to 3.52.6 to 4.6Normal
1.3 to 1.83.5 to 5.04.6 to 6.5High
1.8 to 2.35.0 to 6.06.6 to 7.8Very High
>2.3>6.0>7.8Extreme

Leave a Reply

3 comments on “Test Media pH And EC With The 2:1 Technique, Pour-Through Method And Saturated Media Extract Method

More From Crop Inputs...
Triathlon BA container shot

May 24, 2016

OHP’s Triathlon Biofungicide Now Listed By The Organic Materials Review Institute

Triathlon BA is a broad-spectrum preventative biofungicide that provides control of many foliar and soilborne diseases in ornamentals and herbs.

Read More
Pythium On Chrysanthemum

May 20, 2016

How To Prevent Pythium In Fall Garden Mums

Avoid profit loss in fall garden mums due to pythium root rot with good drainage and integrated pest management practices that reduce risk factors.

Read More
Agro-K

May 19, 2016

Agro-K Expands Distribution In New England Through Partnership With Northeast Agricultural Sales

Agro-K, which manufactures conventional and organic foliar plant nutrients, will distribute its full line of foliar fertilizers and soil biological products through NEAG.

Read More
Latest Stories
Triathlon BA container shot

May 24, 2016

OHP’s Triathlon Biofungicide Now Listed By The Organic …

Triathlon BA is a broad-spectrum preventative biofungicide that provides control of many foliar and soilborne diseases in ornamentals and herbs.

Read More
Two-spotted spider mites, adults and eggs

May 11, 2016

SePRO Launches Summer Insecticide Management Program Fo…

The program is designed to help growers use SePRO’s insect management tools to prevent plant damage from a variety of pests.

Read More
Small Aphid Colony on Calibrachoa

May 2, 2016

How To Stop Aphids In The Greenhouse

When untreated, aphids damage ornamental crops and act as vectors for disease. Integrated Pest Management combined with vigilant scouting can help you stay ahead of the problem.

Read More
Cicada (Greg Hoover, Penn State)

April 26, 2016

Cicadas Set To Emerge In Several Eastern States This Sp…

While there’s no immediate cause for alarm, experts say the cicada’s egg-laying process can damage woody ornamentals and make them vulnerable to diseases.

Read More
Parisitic Wasp Aphidius colemani

April 25, 2016

Plant Growth Regulator Use Can Affect Biological Pest C…

The use of plant growth regulators may negatively influence the outcome of biological control programs, according to researchers at North Carolina State University.

Read More
Beneficial Insectary Orius insidiosus

April 22, 2016

Beneficial Insectary Increasing Production Of Three Bio…

The company is now producing Orius insidiosus, Dalotia coriaria, and Dicyphus hesperus at its California facility, reducing the transit time of perishable biocontrols between producer and grower.

Read More

April 21, 2016

Michigan State University Offers Tips On Greenhouse Soi…

Improper pH and higher than adequate nutrient levels are among the many reasons for regular soil testing.

Read More
Parasitized aphid mummies, ladybird beetle larvae

April 18, 2016

4 Things You Need To Know About Implementing Biological…

Biocontrols are useful alternatives to traditional pesticides that provide effective pest control in the greenhouse. Here are four ways to get started successfully.

Read More
John Wendorf Bayer Ornamentals

April 14, 2016

Bayer’s New Ornamentals Business Manager Aims To Help G…

John Wendorf, who previously managed BFG Supply’s grower division, says when Bayer launches into the ornamentals market this November, growers will have access to a wealth of resources, including a dedicated team focused on ornamentals growers.

Read More
Emerald Ash Borer

March 22, 2016

Canada Implements New Voluntary Biosecurity Standard Fo…

The voluntary standard is designed to protect the greenhouse, nursery, and floriculture industries from invasive plant pests.

Read More

March 22, 2016

EPA Approves Syngenta’s Mainspring GNL Insecticide For …

Featuring the active ingredient cyantraniliprole, Mainspring GNL provides broad-spectrum control of key pests, such as thrips, whiteflies, aphids, caterpillars, leafminers, and leaf-feeding beetles.

Read More
Black Root Rot on Vinca

March 15, 2016

How To Identify Different Root Rots In The Greenhouse

Root rots can cause similar symptoms on hosts. Here are some tips for scouting in your greenhouse.

Read More
One symptom of Botrytis blight is gray, fuzzy sporulation on foliage and flowers, similar to that shown on the flower of this hibiscus

March 11, 2016

Manage Botrytis With These Cultural And Fungicide Contr…

High relative humidity and low temperatures in the greenhouse open the way for Botrytis to develop on plants. A mix of cultural and fungicide control options will help you manage this common disease effectively.

Read More
Biocontrols and beneficials absolutely can be used in outdoor production, with the use of banker plant systems

March 8, 2016

France-Based InVivo Acquiring Bioline, Syngenta’s Bioco…

Bioline, a subsidiary of Syngenta, specializes in the production and marketing of biological control agents, and in particular macroorganisms active against insect pests in fruits, vegetables, and flowers.

Read More

March 5, 2016

Prevent The Spread Of Disease In Irrigation Water

Water-mold pathogens cause significant crop losses and reduce floriculture crop quality. Take measures in your greenhouse to prevent the spread of diseases like Phytophthora and Pythium.

Read More
Bayer Greenhouse Ribbon Cutting

March 1, 2016

Bayer Opens New Greenhouse Research Facility In West Sa…

The $12 million facility will feature two new high-tech greenhouses that will be used in the development of new solutions in vegetable seeds and biologicals.

Read More

February 20, 2016

Hydrogel Technology Means Growers And Their Customers C…

Water and nutrient management are critical elements for quality plant production in the greenhouse. Maintaining the right amounts of available moisture and fertilizer at all times can be pretty labor intensive, but there are tools available to help you keep these inputs at optimum levels as efficiently as possible. Recently, we visited Evonik Industries’ North Carolina production plant for to see how one of these products — Stockosorb — is made, how it works, and learn the benefits of incorporating these tools in your own operation. Learn more about Evonik Industries’ Stockosorb hydrogel product on the Stockosorb website.  

Read More

February 17, 2016

Why It’s Important To Stay One Step Ahead Of Thri…

Keep thrips populations in check and avoid pesticide resistance by using spray and drench products known for their effectiveness.

Read More
[gravityform id="35" title="false" description="false"]