The Processing And Properties Of Pine Wood Chips

Over the past decade, there has been a lot of talk, debate and research conducted on the discovery and use of alternative substrates and substrate components. More information has been generated in recent years than at any other time since the 1960s and ’70s, when the first peat-lite mixes were introduced as substrates for greenhouse crop production.

The most discussed and researched new material/component has been the use of freshly processed pine wood/trees. These pine tree substrates (PTS) have proven successful when used in greenhouse and nursery mixes, mainly as a peat/bark-extender or peat/bark-alternative. It has been suggested that the use of these wood components in peat-based mixes could deem perlite unnecessary due to the aeration (increase in porosity) that the wood components create in the substrates; however, no specific information or research has fully investigated this claim.

 

Alternatives to perlite have been thoroughly investigated over the years primarily because perlite is the most expensive substrate component (by volume) due to the costs associated with mining, heating and transporting the material. While perlite does a wonderful job as an aggregate in peat-based mixes, its particle size can be variable (affecting the porosity in mixes), and the well-known dust it emits during handling can be a nuisance for workers.

In 2010, researchers in the Horticultural Substrates Laboratory at North Carolina State University (NCSU) began investigating the engineering and processing variables that influence the consistency and ability to reproduce traditional and alternative substrate components. These researchers (Brian Jackson and Bill Fonteno) began a different approach to substrate research, one that “began with the end in mind.” They focused on how to better understand the engineering and processing of pine tree substrate components to be better able to recreate them, utilize their potential and make them into more “value-added” components. Specifically, one of the main goals was to create a wood aggregate that could be an effective and cheaper alternative to perlite.

Pine Wood Chips Versus Perlite

Pine tree substrate materials have traditionally been produced from freshly harvested loblolly pine (Pinus taeda) trees that were chipped and then further processed in a hammer mill through screen sizes ranging from 3/16- to 3/8-inch. The resulting end product contained a mix of particle sizes and shapes, mostly being a fibrous-like material. It was the mix of fibrous particle sizes that gave the material water-holding properties similar to some peat and pine bark substrates.

To produce a non-fibrous wood component, it was discovered that changing the size of the coarse wood chips (using different machines to chip the pine logs) and adjusting the moisture content of the wood chips prior to hammer-milling yielded consistent non-fibrous small pine wood chips (PWC) that can be used specifically as substrate aggregates. When coarse wood chips are processed in a hammer mill through a ¼-inch screen, the end product is PWC that has the same particle size as a coarse-grade perlite. Because different aggregate sizes are needed for different substrate mixes (propagation, plugs, bedding plant flats, one-gallon pots, etc.), the screen size used to process the wood chips can be changed to produce smaller wood chips. So, like perlite, different grades/sizes of PWC can be constructed.

A full range of laboratory testing was conducted on PWC to determine the exact properties of this material. Particle sizes, moisture release curves, drainage profiles, hydration efficiency and physical properties including total porosity, air space, container capacity and bulk density were determined. The PWC were tested against perlite in all studies to compare the differences and/or similarities between these two aggregates.

Both aggregates were amended to peat at rates of 10, 20 and 30 percent, which cover the general range of amendment percentages that growers would use in their greenhouse mixes. At each aggregate rate tested, there were no differences in the substrate physical properties. Higher rates (>30 percent) were also tested and at the higher rates, more air space is found in mixes containing PWC compared to perlite.

After thorough and repetitive testing, results remained consistent that PWC can replace perlite in a peat substrate with the same resulting change to substrate porosity (air and water percentages). Even though perlite can be completely substituted with PWC with no change in physical properties, the addition of 3 to 5 percent perlite to mixes may still be needed since the general public (consumers) has the perception that the white particles of perlite are actually fertilizer.

Cost Performance, Uses And Production Of Pine Wood Chips

The estimated cost of PWC, including the acquisition of pine trees, equipment to process the trees, and actual manufacturing (energy, man hours, etc.) will be 40 to 50 percent cheaper than perlite. Further assessment on the economics of PWC commercialization is being investigated.

Since the development of PWC in 2010, dozens of plant growth trials have been conducted to investigate their use as aggregates in greenhouse substrates. These plant trials included numerous summer and fall annual species, perennials, vegetable transplants and seasonal floriculture crops (mums and poinsettias). General observations during these trials show that the PWC aggregates do not decompose during crop production (no shrinkage), and they barely change color (they remain the yellow color of fresh pine wood) if at all. Another observation made numerous times over the past several years is the quality of the root growth of plants grown in mixes containing PWC and other wood substrate components.

University researchers, substrate manufacturer R&D personnel and some growers have independently commented on the exceptional root growth that many plants will have. There are several possibilities for why this is occurring but no solid evidence is currently able to explain it fully. Additional research results will be released in the near future to cover important cultural information about the use of PWC in greenhouse crop production, including fertility practices, lime/pH modifications, plant growth regulator efficacy and aging/phytotoxicity concerns.

Despite the traditional uses (pulp, paper, timber, fuel, etc.) and more recent uses (wood pellets, biofuels, etc.) of pine trees in the United States, it is still believed that pine wood is a reliable source of sustainable greenhouse substrate components in the foreseeable future. The Southeastern United States is one of the most abundant wood-producing regions in the entire world and production (acreage) continues to be more productive, thanks to innovations in tree genetics and silviculture practices.

It has been mentioned in the past that a grower, consortium of growers, substrate manufacturer(s), or other private entrepreneurs could intentionally plant pine trees for the specific purpose of growing them for use in horticultural substrates. Since the ideal tree age for processing is between 12 to 14 years (depending on planting density, soil type, fertility, etc.), the turnover in acreage would be relatively quick. It is unknown at this time how much PWC or other pine wood components could be produced from an acre of land planted dense enough to be uniformly harvested at one time (which is unlike current pine management practices). Much work continues at NC State University at the Substrate Processing and Research Center (SPARC), constructed in 2014, to better investigate the engineering and utilization of traditional and alternative substrates.

 

 

 

 

 

 

Topics:

Leave a Reply

More From Crop Inputs...
Hendriks-Half-Open-Roof_GGS

March 26, 2015

10 Greenhouse Products For First-Rate Growing Environments

From coverings to fork-lifts, greenhouse suppliers offer a variety of products to make growing easier. Check out the slideshow to learn more about these, plus several other products that can offer you value, versatility and durability.

Read More
Rose rosette on Knockout rose, April 2012. Photo credit: Alan Windham, University of Tennessee

March 25, 2015

$58 Million In APHIS Farm Bill Funding Will Support Horticulture Priorities

Nearly $58 million as been allocated by the USDA's Animal and Plant Health Inspection Service (APHIS) to support the industry's Plant Pest and Disease Management and Disaster Prevention Program, under Farm Bill Section 10007. The program will support mitigation efforts for specialty crops, including providing research and other funding to address plant pest and disease priorities for the specialty crop industry, including floriculture and nursery crops.

Read More
AFE scholarship_Ryan Dickson

March 25, 2015

AFE Educational Grant And Scholarship Application Deadlines Approaching

Apply now for American Floral Endowment (AFE) scholarships or educational grants. Applications can be found online. For educational grants for 2015-2016, applications must be submitted no later than June 1. Scholarship applications are due May 1. AFE will award $40,000 in scholarships for 2015.

Read More
Latest Stories
OxiPhos_BioSafe2

March 23, 2015

BioSafe Makes Label Changes To OxiPhos And ZeroTol 2.0

There have been some recent label changes made to the BioSafe Systems product OxiPhos, a systemic bactericide/fungicide that reduces downy mildew spores when tank mixed with ZeroTol 2.0.

Read More
Nufarm_logo

March 23, 2015

Nufarm Fungicides Now Registered For Use On Edible Crop…

Nufarm Americas announced label expansions for two of its fungicides that will provide more pest management options for the ornamental industry. The Cleary 3336 F and EG fungicides are now registered for use across a wider range of edible crops, including select greenhouse vegetables and transplants, herbs and backyard fruit.

Read More
ColeusDMLeafSporulation_Daughtrey

March 11, 2015

Research Gives Clues For Preventing Coleus Downy Mildew

Maintaining awareness of coleus downy mildew is more important than ever to safeguard these attractive plants for reliable garden performance.

Read More
Rose Rosette on Knockout rose, May 2013. Photo credit: Alan Windham, University of Tennessee

March 2, 2015

Rose Rosette Disease Fight Gets A Boost From Government…

In 2014, $4.6 million was awarded through the Farm Bill to tackle rose rosette disease, a devastating pathogen that affects one of the industry’s most important crops.

Read More
Fig 1 Leafy Gall On Leucanthemum Becky

March 2, 2015

How To Prevent Leafy Gall Before You Lose Plants

Leafy gall is a nasty disease that can go undetected until plant damage is done. Take these steps to protect your crops from infection.

Read More

February 17, 2015

A New Look At Biological Control: Can Plants Affect The…

The success of a biological control program depends on a number of factors including quality of natural enemies, timing of release, release rates and environmental conditions. However, what is typically not taken into consideration is how plants can affect the performance of natural enemies, including attack rate and searching ability. Biological control agents work hard to protect plants, but plants have ways to help themselves, too.

Read More

February 1, 2015

New Pest Control Products For Your Toolbox

Add one of these new insecticides to your IPM program for successful pest control.

Read More
IR-4_profile_Feb2015

January 29, 2015

IR-4: A Pest Management Resource For Growers

Almost 40 years ago, IR-4 (Interregional Research Project Number 4) began serving the ornamental horticulture industry, helping to facilitate the registration of pest management tools. IR-4 does this primarily by surveying growers about their pest management issues and then hosting workshops to review survey results and set priorities for the coming years. Most recently, IR-4 coordinated a meeting of researchers and industry members on pollinator health and neonicotinoid chemistries to start a discussion on the needed research. The next step will be to get the outcomes from that workshop out to the public.

Read More

January 28, 2015

Biocontrols 2015 Conference & Tradeshow: Peace Tree…

Lloyd Traven, a speaker at the upcoming Biocontrols 2015 Conference & Tradeshow, was one of the industry’s early adopters of biocontrols in the greenhouse. Traven, owner of Peace Tree Farm, is evangelical about the technology as an effective tool for resistance management, as well as improved plant quality that contributes to a grower’s bottom line.

Read More

January 27, 2015

Southwest Perennials Improves Production, Shortens Crop…

A father-and-son team find LEDs deliver a higher rooting rate for cuttings propagated under the lights.

Read More
Wainwright-web-620x349

January 22, 2015

Quality Control With Biocontrols

Make sure the shipment of beneficials that just arrived is viable and ready to go to work in your greenhouse, nursery, or field. Here are five steps you can take to ensure success with your biocontrols.

Read More

January 9, 2015

6 New Fertilizer Products For Healthy Plants

These five products add even more options for delivering nutrients to the root zone.

Read More

January 7, 2015

Fertilizers And The Future

As growers look for new ways to cut costs and conserve resources, fertilizer and equipment companies are offering products that strive to save water, reduce toxic runoff and keep chemicals out of the equation.

Read More

December 31, 2014

Gain Greater Control Of Fertilizer With Automated Ferti…

University researchers look at integrating irrigation and fertilization with the help of water sensors to reduce fertilizer treatments and improve application timing.

Read More
As directed by EPA, the bee hazard icon appears in the Directions For Use for each application site for specific use restrictions and instructions to protect bee and other pollinators.

December 9, 2014

Fact Sheet: The Value Of Neonicotinoids To Turf And Orn…

An extensive study of the diverse turf and ornamental industry (“The Green Industry”) reveals that neonicotinoids are the top-rated products used by professionals to control their most important pests in greenhouses, landscapes, lawns, nurseries and trees.

Read More
As directed by EPA, the bee hazard icon appears in the Directions For Use for each application site for specific use restrictions and instructions to protect bee and other pollinators.

December 9, 2014

New Study Finds Neonicotinoids Are Top-Rated Products F…

According to results of a survey by AgInfomatics, professionals in the turf and ornamental industries fear the loss of neonicotinoid products would reduce the quality of their plants and services, increase costs and negatively impact their ability to manage pest resistance.

Read More

December 2, 2014

Grow-Tech Announces BioStrate, Its Newest Hydroponic Gr…

Grow-Tech LLC recently announced the release of BioStrate Felt, a biobased textile specifically engineered for the growing of hydroponic microgreens and baby salad greens.

Read More

November 25, 2014

Former Harris Seeds Co. CEO, Per Jensen, Passes At 85

A passion for plants defined long-time industry influencer.

Read More