Biological Controls And Pesticides Can Work Together

Exposure to pesticide residues may reduce the ability of natural enemies like Amblyseius californicus to locate prey.

Some growers are interested in combining natural enemies — biological control agents, such as parasitoids and predators — with pesticides, which in this case include insecticides and miticides. The goal is to regulate arthropod (insect and mite) pest populations and avoid or minimize plant damage. Combining the two methods may also lead to a reduction in pesticide applications and, thus, fewer problems associated with pesticide resistance. It is important to understand, however, that some pesticides may have direct or indirect effects on natural enemies after exposure.

Pesticides And Natural Enemies

The impact of pesticides is not solely based on direct effects like mortality. It is also not uniquely based on contact exposure or odors that influence behavior, which affect the ability of natural enemies to locate prey (hosts) on plants.

Pesticides may have indirect effects, sometimes referred to as sub-lethal or chronic effects. These effects consist of inhibiting host foraging ability, reproduction, development time, mobility and longevity. Furthermore, parasitism/predation rates and prey consumption may be inhibited, significantly reducing the performance of natural enemies. The susceptibility of natural enemies to pesticides varies depending on the life stage (eggs, larvae, nymphs or adults) that was exposed.

Pesticides may, in general, alter the fitness of natural enemies leading to long-term effects on populations. Altered fitness would influence the natural enemies’ effectiveness in regulating arthropod pest populations. There are a number of biological and behavioral factors pesticides may indirectly affect.

Reproduction: The number of eggs laid by females, duration of the oviposition period and egg survival may be negatively affected. Any indirect effects on reproduction may lead to outbreaks of arthropod pests.

Longevity: Both immature and adult longevity may be severely impacted, which could result in increased duration of the life stages.

Development Rate: Development may be prolonged or reduced. In either case, this may interfere with synchronization of the natural enemy with the designated prey. It could also influence the number of prey present.

Sex Ratio: One sex (male or female) may predominate, or the sex ratio may be altered such that there is an excess of one sex. The latter would reduce the number of progeny (young) in the next generation.

Behavior: Some pesticides — especially the pyrethroids — may have repellent activity that alters or disrupts the ability of natural enemies to locate prey. This allows the prey to escape, attack and potentially continue damaging plants. Additionally, due to the mobility of natural enemies (adult parasitoids and adult and immature predators) this may actually lead to increased exposure to pesticide residues. The increased exposure could then decrease movement or flight activity.

Furthermore, these residues may be harmful if consumed during grooming or when feeding on contaminated prey. This may alter prey quality and reduce acceptability of prey to parasitoids or predators. Any exposure to pesticide residues may in some form reduce foraging behavior, which decreases the ability of natural enemies to locate prey especially those that are distributed in patches among a crop (i.e. spider mites). This decreases the frequency of encountering prey, resulting in a reduction in the number of prey parasitized (for parasitoids) or consumed (for predators).

Mobility: Pesticides may influence mobility by reducing the number of encounters with prey. This negatively affects foraging ability and results in decreased mortality of insect or mite pests.

Indirect Effects Of Systemic Insecticides On Natural Enemies

There are unsubstantiated claims that systemic insecticides and natural enemies are compatible. Systemic insecticides, especially when applied to soil or growing medium as granules or drenches, and any metabolites are generally considered to be safe or non-toxic to natural enemies. This is due to minimal direct exposure. In some cases, however, there may be indirect effects, and depending on the feeding habits of predators and parasitoids, the two may be incompatible.

Predators may be indirectly affected when they feed on plant tissue as a supplemental food source. For example, predatory bugs such as Orius spp. may feed directly on plant tissues as a supplemental food source during certain stages of development, potentially ingesting lethal concentrations of systemic insecticides. Other bugs, like ladybird beetles, feed only on prey, so they are less likely to be indirectly affected by systemic insecticides.
Parasitoids may be indirectly harmed by plants treated with systemic insecticides as a result of feeding on extra-floral nectaries (sugars and amino acids) containing the active ingredient. Behavior and survivorship may be influenced by systemic insecticides when the active ingredient is translocated into pollen or nectar, indirectly affecting parasitoids during the feeding process.

Any odors or volatiles associated with some insecticides (especially those with extended residual activity) may invoke an avoidance behavior in natural enemies. This impacts their effectiveness as biological control agents. The duration of any indirect effects may be influenced by the systemic insecticide and persistence or residual activity. Furthermore, the active ingredient may not actually be responsible for any effects, but any metabolites produced during the conversion process may be indirectly harmful to natural enemies.

Systemics And Leaf Guttation

The active ingredient of a systemic insecticide may move through the leaf edge to the outside leaf surface through guttation. Guttation is a natural occurrence in turgid plants in which liquid droplets associated with xylem (water-conducting tissue) fluids accumulate at the margins of leaves or leaf tips. This occurs when the fluids are forced out of stomata-like pores or hydathodes, which are located in the epidermis, after exposure to moist growing medium and high relative humidity.

The droplets that form when exposed to low growing medium moisture content and dry ambient air conditions tend to contain more concentrated solutes due to excessive water evaporation. This phenomenon may occur in the early morning or evening. Guttation fluid may contain a variety of mineral elements and organic compounds. The quantity exuded varies from several droplets per leaf to many milliliters. The composition of the liquid may also vary from nearly pure water to dilute solutions containing organic and inorganic solutes and minerals. Any residues may be left by evaporation of guttation fluids.

Guttation fluids may contain concentrations of the active ingredient of systemic insecticides, which are subject to volatilization, leaving residues that may be toxic to natural enemies, including parasitoids and predators. Guttation is a means by which systemic insecticides move from the inside to the outer leaf surface. Any evaporation of water from the guttation fluids may leave deposits on the tip of the leaf surface, which could impact natural enemies indirectly during the grooming process. The translocation and accumulation of insecticides in guttation fluid is clearly evident, although the impact on natural enemies requires further investigation. Moreover, any toxic metabolites may be excreted from leaves.

The toxicity of guttation fluids may be associated with the water solubility of the systemic insecticide and concentration present in guttation fluids, which is related to the application rate. For example, parasitoids may drink from guttation fluids and inadvertently ingest some of the active ingredient; however, the effects of this ingestion are unknown at this time. Studies with bees, which have intense drinking behaviors, have shown that they can be killed or indirectly affected after consuming guttation droplets from plants treated with systemic insecticides.

This overview of pesticide compatibility with natural enemies addresses the complex nature of this interaction. Therefore, when attempting to integrate natural enemies with insecticides, it is important to be aware of any potential indirect effects, particularly those associated with systemic insecticides. In some cases, using systemic insecticides may not be compatible with natural enemies.

Leave a Reply

More From Insect Control...
Damage to Cannabis Buds from Hemp Russet Mite

October 22, 2017

Take Control of Mites in Cannabis Crops

Mite pests have become a problem for cannabis growers. To reduce crop losses, follow these best practices for better best management.

Read More
Whitefly adult

October 13, 2017

Researchers Continue to Keep Close Tabs on Whitefly

Dr. Lance Osborne of the University of Florida and Dr. Cindy McKenzie of USDA’s Agricultural Research Service are evaluating insecticide efficacy and the impact of product rotations on whitefly biotype populations.

Read More
Biocontrols in a Greenhouse

September 4, 2017

How to Successfully Integrate Biocontrols Into Greenhouse Floriculture Production

The widespread adoption of biocontrol in Canadian floriculture greenhouses grew out of necessity. The lessons they learned can help you incorporate these tools in your production.

Read More
Latest Stories
Damage to Cannabis Buds from Hemp Russet Mite

October 22, 2017

Take Control of Mites in Cannabis Crops

Mite pests have become a problem for cannabis growers. To reduce crop losses, follow these best practices for better best management.

Read More
Whitefly adult

October 13, 2017

Researchers Continue to Keep Close Tabs on Whitefly

Dr. Lance Osborne of the University of Florida and Dr. Cindy McKenzie of USDA’s Agricultural Research Service are evaluating insecticide efficacy and the impact of product rotations on whitefly biotype populations.

Read More
Biocontrols in a Greenhouse

September 4, 2017

How to Successfully Integrate Biocontrols Into Greenhou…

The widespread adoption of biocontrol in Canadian floriculture greenhouses grew out of necessity. The lessons they learned can help you incorporate these tools in your production.

Read More
Aphids On Older Leaves

August 8, 2017

OHP Launches New Insecticidal Soap, Gains New Registrat…

OHP is making two new crop protection tools available to greenhouse growers: Kopa, an insecticidal soap, and California registration for Ancora, a microbial insecticide.

Read More
Cannabis Crop Protection

July 27, 2017

Keep Pests Out of Your Cannabis Facilities

Prevention of pest introduction is the most critical first step in an effective pest management program.

Read More
Aphids

July 7, 2017

New Tools for Your Crop Protection Arsenal in the Green…

Over the past few months, crop protection companies have developed several new products designed to help you manage a wide range of insect and disease pests. Here’s a look at some of them.

Read More
Yellow Stick Card for thrips

July 5, 2017

Tips From a Top 100 Grower for Effective Thrips Control

A combination of conventional materials and biologicals can help provide season-long management of thrips in hanging baskets.

Read More
Scale on leaf nodes

July 2, 2017

Why Biological Control Fails: Encapsulation May be the …

If your biological control isn’t working for you, encapsulation could be to blame. Learn how this defensive response can cripple a biological control program.

Read More
Koppert Ulti-Mite Swirski sachet

June 21, 2017

New Tool from Koppert Provides More Effective Thrips Ma…

A newly patented sachet for the predatory mite Amblyseius swirskii is resistant to both low and high levels of humidity, helping growers combat thrips infestations.

Read More
Cannabis Seedling

May 20, 2017

Biocontrols: A Practical Option for Cannabis

With limited options for chemical pest control, cannabis growers are incorporating biocontrols into their integrated pest management programs. More education will cement this solution as a viable option in this emerging market.

Read More
Four Lined Plant Bug

May 8, 2017

Four-Lined Plant Bug Emerges as Troublesome Pest in Pen…

Four-lined plant bug damage is very characteristic: circular brown to black spots about one-sixteenth of an inch in diameter. The spots are easily mistaken for disease or frost damage.

Read More

May 4, 2017

Bayer Altus Update: Neonic Insect Control Alternative N…

Altus, a butenolide class insecticide with the active ingredient flupyradifurone, will be available beginning May 1, and is labeled for greenhouse and nursery use on ornamental plants, vegetable transplants, and indoor vegetable production.

Read More
Ambrosia Beetle

April 7, 2017

Tips On How to ID Ambrosia Beetle Damage, And How to Co…

Ambrosia beetles are often overlooked as being a primary cause of plant loss, but research and experience are proving otherwise.

Read More

February 28, 2017

OHP Launches New Ovicide/Miticide, Announces Partnershi…

Applause is a new miticide that targets eggs and immature stages of several mite species. Through the Vestaron partnership, OHP will market Spear-O, a toxin-derived bioinsecticide.

Read More
Remote Sensing Feature

February 12, 2017

Using Remote Sensing to Optimize IPM in Greenhouses

Researchers at the University of California Davis are developing advanced remote sensing technologies to automate detection of insect pest infestations in greenhouses, which could revolutionize integrated pest management practices.

Read More
Adult Thrips feature

January 25, 2017

Tips to Stay Ahead of Aphids, Mites, and Thrips

Control these persistent pests with innovative chemistries that will expand your rotation options with new modes of action.

Read More
Effective pest control

January 12, 2017

Prevention and Early Intervention: The Keys to Biocont…

Advance preparation and starting out right helps you implement an effective biocontrol program that reduces pest pressure.

Read More
Two-spotted spider mites, adults and eggs

January 10, 2017

Pest Management Workshop to Take Place in Virginia on J…

Battlefield Farms will host the workshop, which is being coordinated by Virginia Cooperative Extension and will focus on new techniques in disease and insect control.

Read More