Managing Electrical Conductivity (EC) For Hydroponic Basil Production

Managing nutrient solutions is one of the most important responsibilities in hydroponic crop production. When managing the concentration of nutrients, we use electrical conductivity (EC) as a guide to maintaining and adjusting our nutrient levels, trying to provide adequate nutrients and minimize excessive fertilizer use. However, what EC is required for our crops? We wanted to better understand how nutrient solution EC affects basil growth and tissue nutrient concentrations under different daily light integrals (DLIs).

In an effort to provide research-based support for hydroponic basil producers, we have been conducting a suite of research studies focused on various aspects of production. We’ve already shared our results on the effects cultivars, hydroponic systems, and planting densities have on the growth and yield of basil.

Next month, we will be looking at how temperature influences basil growth and development. However, in this article we will present research on how the nutrient solution EC affects growth and tissue concentration of hydroponic basil.

Nutrient Solution ECs And Daily Light Integrals

First, we transplanted two-week-old sweet, holy, and lemon basil seedlings into nutrient-film technique (NFT) hydroponic systems with nutrient solution EC of 0.5, 1, 2, 3, or 4 mS∙cm−1.

The nutrient solution consisted of deionized water and 16N−1.8P−14.3K fertilizer (Jack’s Hydro FeEd; JR Peters), and the ECs were maintained at their target level daily by adding concentrated stock solution or clear water to raise or lower the EC, respectively. The nutrient solution pH was adjusted to 6 daily, aerated, and circulated through a heater/chiller unit to maintain a water temperature of 72°F.

Supplemental lighting was provided by HPS (high pressure sodium) lamps to increase the light intensity during the day for the plants grown under a high DLI, and provide a 16-hour day length for plants grown under both low and high DLIs. Aluminized shade cloth was also used to decrease daytime light intensity for plants grown under a low DLI. The low DLI greenhouse was maintained at a DLI of ~7 mol∙m−2∙d−1, while the high DLI greenhouse was maintained at ~15 mol∙m−2∙d−1. Three weeks after transplanting, we measured height, node and branch number, and fresh and dry mass of shoots.

Satisfactory Growth And Nutrition Observed

Basil had comparable growth (fresh and dry mass, branches, nodes) across nutrient solution ECs and there were no significant differences (Figure 1).

Figure 1. Ocimum basilicum electrical conductivity
Figure 1. Sweet basil grown with ECs ranging from 0.5 to 4 mS∙cm−1 under low (~7 mol∙m−2∙d−1) or high (~15 mol∙m−2∙d−1) daily light integrals (DLIs). This photo was taken three weeks after transplanting seedlings into hydroponic systems and treatments.

 

Although EC has no effect on basil growth, growth increased for all three basil species grown under ~15 mol∙m−2∙d−1 compared to those grown under 7 mol∙m−2∙d−1. There was no interaction between the EC and DLI on basil growth.

In addition to the growth and yield of basil, we also wanted to measure how tissue nutrient concentrations were affected by nutrient solution EC. When we looked at the nutrient concentrations, the results varied by nutrient. For example, for nitrogen, phosphorous, and sulfur, tissue concentration increased as nutrient solution EC increased from 0.5 to 4 mS∙cm−1 (Figure 2). Alternatively, calcium and magnesium tissue concentrations were lower with increasing EC.

Chart of nitrogen concentration of sweet basil grown with various ECs
Figure 2. Nitrogen (N) concentration of sweet basil grown with ECs ranging from 0.5 to 4 mS∙cm−1 under low (~7 mol∙m−2∙d−1) or high (~15 mol∙m−2∙d−1) daily light integrals (DLIs). Data was collected three weeks after transplanting seedlings into hydroponic systems and treatments.

What we found most interesting was that when the tissue nutrient concentrations are compared with recommended tissue concentrations for basil, the majority of values were within or above the recommended ranges, including those plants grown with the lowest EC (0.5 mS∙cm−1). For those few nutrients that were slightly below recommended values, we saw no visible signs of nutrient deficiencies and all plants, regardless of the EC, appeared healthy.

Managing Hydroponic Basil Nutrition

What are the implications of this research for managing nutrient solutions? First, the fact that most nutrients were within sufficient ranges and plants appeared healthy with no differences in yield across all of the ECs for all three species demonstrates that high-quality basil can be grown under a very wide range of ECs. This provides some opportunities and flexibility for hydroponic producers. A lower EC may help minimize fertilizer costs, whereas a higher EC may be useful to diminish the change in nutrient ratios in solution.

While not reported here, we did measure increased potassium concentrations in the nutrient solution from the beginning to the end of the production period. We attribute this increase in potassium to the potassium carbonate base we were using to increase solution pH.

Additionally, we suspect that the increased potassium concentrations may have antagonized uptake of calcium and/or magnesium. Always remember that additions to nutrient solutions such as acids or bases can add nutrients available for plants.

We were not surprised to see improved growth under the higher DLI. Previous research has reported increases in growth of up to ~500 µmol∙m−2∙d−1, so we were not surprised to see enhanced growth under the higher DLI. We were surprised to see that there was no effect of EC on basil growth. While we found that DLI affected growth, the lack of an interaction with EC to affect growth means that you do not need to change your EC as light intensity and the DLI change across seasons. While some producers lower their EC, we suspect this to be due to warmer temperatures and not higher light.

Take-Home Messages For Hydroponic Production

The bottom line is that basil grows well under a wide range of ECs. Most interestingly, basil yield, nutrient concentrations, and appearance were acceptable across ECs, even at low levels. Additionally, if there is an opportunity to increase the DLI or light intensity for basil production, basil responds very favorably to high light. Because the results may also vary across different locations, greenhouse environments, and cultural practices, as always, we encourage producers to conduct on-site trials to determine optimal nutrient-solution concentrations for the cultivars they are growing in their greenhouse environment.

Topics: ,

Leave a Reply

2 comments on “Managing Electrical Conductivity (EC) For Hydroponic Basil Production

  1. Figure 1 is incorrect. The text says that the foto shows plants and different EC’s but the foto shows plants under a temp gradient.

More From Production...
Orius_June 2015

September 25, 2016

Peace Tree Farm Hosting Biocontrols Event In October

“Advanced Greenhouse Biocontrols for Ornamental and Vegetable Producers” will feature advice from biocontrol authorities Lloyd Traven and Suzanne Wainwright-Evans.

Read More

September 21, 2016

Floriculture Industry Working To Solve The Whitefly Problem

This summer, the floriculture industry has been faced with a dangerous new development — the detection of the Q-Biotype whitefly (Bemisia tabaci) in outdoor landscapes. It’s the first time that the Q-Biotype has been found in the U.S., outside of a greenhouse or wholesale nursery, since the pest was first detected on an ornamental plant in an Arizona greenhouse in December 2004. This year in Florida, there have been 47 detections of the Q since April, in retail nurseries and residential landscapes in 10 counties in Florida, from Miami-Dade to Duval County, primarily on hibiscus. Other hosts involved are crossandra, eggplant transplants, lantana, ficus, and porter weed. The detections have been in 17 retail nurseries, eight wholesale nurseries, 10 residential landscapes, and two agricultural fields. Other states have reported Q-Biotype detections this year, as well. The discovery of Q-Biotype whitefly in the landscape is troubling for the entire ornamentals industry, […]

Read More
Biocontrols and beneficials absolutely can be used in outdoor production, with the use of banker plant systems

September 19, 2016

Learn About Biological Controls In The Greenhouse In A New Online Course

Michigan State University Extension (MSU) and Kansas State University Research and Extension are collaborating on a pre-recorded online course on “Biological Control for Greenhouse Growers.”

Read More
Latest Stories
Orius_June 2015

September 25, 2016

Peace Tree Farm Hosting Biocontrols Event In October

“Advanced Greenhouse Biocontrols for Ornamental and Vegetable Producers” will feature advice from biocontrol authorities Lloyd Traven and Suzanne Wainwright-Evans.

Read More

September 21, 2016

Floriculture Industry Working To Solve The Whitefly Pro…

This summer, the floriculture industry has been faced with a dangerous new development — the detection of the Q-Biotype whitefly (Bemisia tabaci) in outdoor landscapes. It’s the first time that the Q-Biotype has been found in the U.S., outside of a greenhouse or wholesale nursery, since the pest was first detected on an ornamental plant in an Arizona greenhouse in December 2004. This year in Florida, there have been 47 detections of the Q since April, in retail nurseries and residential landscapes in 10 counties in Florida, from Miami-Dade to Duval County, primarily on hibiscus. Other hosts involved are crossandra, eggplant transplants, lantana, ficus, and porter weed. The detections have been in 17 retail nurseries, eight wholesale nurseries, 10 residential landscapes, and two agricultural fields. Other states have reported Q-Biotype detections this year, as well. The discovery of Q-Biotype whitefly in the landscape is troubling for the entire ornamentals industry, […]

Read More
Biocontrols and beneficials absolutely can be used in outdoor production, with the use of banker plant systems

September 19, 2016

Learn About Biological Controls In The Greenhouse In A …

Michigan State University Extension (MSU) and Kansas State University Research and Extension are collaborating on a pre-recorded online course on “Biological Control for Greenhouse Growers.”

Read More
Accordion Horticultural Tray from Landmark Plastic

September 1, 2016

New Plant Pots And Trays Offer Water Savings And Much M…

Manufacturers are focused on delivering new products that are sustainable and flexible, and can be customized to meet growers’ needs.

Read More
Bee on Sunflowers

August 30, 2016

Bee Vectoring Technologies Names New President And CEO

Ashish Malik, a former Vice President of Global Marketing at Bayer CropScience, will focus on marketing Bee Vectoring Technologies’ patented proprietary tray dispenser system that uses bees to delivery organic compounds directly to crops.

Read More
Bees And Pesticides

August 23, 2016

Studies Offer Conflicting Views On Neonic Effect On Bee…

How much exposure to neonicotinoids do bees need before their health becomes affected? That’s the question two research teams look to answer.

Read More
Chrysanthemum Aphid

August 22, 2016

How To ID And Manage Black Aphids In Chrysanthemums

Growers in Michigan have recently been reporting a higher presence of this pest. Here are some tips on how to control it.

Read More
Cannabis Crop Protection

August 22, 2016

Cannabis Group Stays Focused On Consistent Standards Fo…

The Foundation of Cannabis Unified Standards (FOCUS), is an independent, third-party, not-for-profit organization, is in the process of developing cannabis-specific standards for everything from cultivation and extraction to packaging and retail.

Read More
Leaf Septoria In Cannabis

August 21, 2016

Three Diseases To Watch For In Cannabis Production

The development of root rot, powdery mildew, and leaf septoria can damage cannabis to the point of complete crop loss.

Read More
Growers Supply Workshop

August 21, 2016

Learn Tips On Greenhouse Management During Growers Supp…

The hands-on workshops take place Sept. 13-15 in Iowa and Oct. 12-14 in Connecticut and feature new trends and innovations in controlled-environment agriculture.

Read More
Greenhouse Whitefly

August 18, 2016

Vestaron Planning For More Research And Development Of …

On the heels of launching Spear-T, its first bioinsecticide, Vestaron has received additional financing that will be used to develop new products with new modes of action.

Read More
BioWorks Mycotrol

August 17, 2016

New Organic Mycoinsecticide From BioWorks Now Registere…

BioWorks’ Mycotrol can be used to manage whitefly, thrips, aphids, and other insects in greenhouses and nurseries.

Read More
Downy mildew lesions on light coleus cultivars feature

August 12, 2016

How You Can Control Downy Mildew In Coleus, Roses, And …

Downy mildew diseases are potentially devastating to ornamental crops and at the very least can cause unsightly damage. Check out the latest research and recommendations for preventing it.

Read More
Jen Browning BASF

August 4, 2016

Horticulturist And Entomologist Jen Browning To Speak A…

Browning will discuss the use of nematodes in managing pests in greenhouses and nurseries.

Read More
Delta T Floor Mounted Pump

August 4, 2016

How Suppliers Are Helping Greenhouse Growers Deal With …

Many growers say they are looking for more direct heating to the plant, along with better boiler and system efficiencies. Here's what two companies are doing in response.

Read More
Poinsettia, Heavy Whitefly Infestation -Lower Leaves, Insect - Feature

August 3, 2016

Tips For Successful Late-Season Whitefly Control

Managing late-season whiteflies successfully on poinsettia requires preventative measures put in to action early in the production cycle.

Read More
LM-Bark 1 (Lambert Peat Moss)

August 3, 2016

Learn The Basics Of Growing Media From Texas A&M Un…

The Texas A&M University AgriLife Extension website offers growers a primer on growth media, from the most common types of materials to how to prepare them.

Read More
Penn State Plant Bud

August 3, 2016

Penn State University Offers Recipe For Potting Media

A mix of peat moss, vermiculite, or perlite, and compost or organic fertilizers, can provide a suitable environment with sufficient water-holding capacity, nutrient content, and aeration for plant growth and development.

Read More
[gravityform id="35" title="false" description="false"]