Managing Electrical Conductivity (EC) For Hydroponic Basil Production

Managing nutrient solutions is one of the most important responsibilities in hydroponic crop production. When managing the concentration of nutrients, we use electrical conductivity (EC) as a guide to maintaining and adjusting our nutrient levels, trying to provide adequate nutrients and minimize excessive fertilizer use. However, what EC is required for our crops? We wanted to better understand how nutrient solution EC affects basil growth and tissue nutrient concentrations under different daily light integrals (DLIs).

In an effort to provide research-based support for hydroponic basil producers, we have been conducting a suite of research studies focused on various aspects of production. We’ve already shared our results on the effects cultivars, hydroponic systems, and planting densities have on the growth and yield of basil.

Next month, we will be looking at how temperature influences basil growth and development. However, in this article we will present research on how the nutrient solution EC affects growth and tissue concentration of hydroponic basil.

Nutrient Solution ECs And Daily Light Integrals

First, we transplanted two-week-old sweet, holy, and lemon basil seedlings into nutrient-film technique (NFT) hydroponic systems with nutrient solution EC of 0.5, 1, 2, 3, or 4 mS∙cm−1.

The nutrient solution consisted of deionized water and 16N−1.8P−14.3K fertilizer (Jack’s Hydro FeEd; JR Peters), and the ECs were maintained at their target level daily by adding concentrated stock solution or clear water to raise or lower the EC, respectively. The nutrient solution pH was adjusted to 6 daily, aerated, and circulated through a heater/chiller unit to maintain a water temperature of 72°F.

Supplemental lighting was provided by HPS (high pressure sodium) lamps to increase the light intensity during the day for the plants grown under a high DLI, and provide a 16-hour day length for plants grown under both low and high DLIs. Aluminized shade cloth was also used to decrease daytime light intensity for plants grown under a low DLI. The low DLI greenhouse was maintained at a DLI of ~7 mol∙m−2∙d−1, while the high DLI greenhouse was maintained at ~15 mol∙m−2∙d−1. Three weeks after transplanting, we measured height, node and branch number, and fresh and dry mass of shoots.

Satisfactory Growth And Nutrition Observed

Basil had comparable growth (fresh and dry mass, branches, nodes) across nutrient solution ECs and there were no significant differences (Figure 1).

Figure 1. Ocimum basilicum electrical conductivity
Figure 1. Sweet basil grown with ECs ranging from 0.5 to 4 mS∙cm−1 under low (~7 mol∙m−2∙d−1) or high (~15 mol∙m−2∙d−1) daily light integrals (DLIs). This photo was taken three weeks after transplanting seedlings into hydroponic systems and treatments.

 

Although EC has no effect on basil growth, growth increased for all three basil species grown under ~15 mol∙m−2∙d−1 compared to those grown under 7 mol∙m−2∙d−1. There was no interaction between the EC and DLI on basil growth.

In addition to the growth and yield of basil, we also wanted to measure how tissue nutrient concentrations were affected by nutrient solution EC. When we looked at the nutrient concentrations, the results varied by nutrient. For example, for nitrogen, phosphorous, and sulfur, tissue concentration increased as nutrient solution EC increased from 0.5 to 4 mS∙cm−1 (Figure 2). Alternatively, calcium and magnesium tissue concentrations were lower with increasing EC.

Chart of nitrogen concentration of sweet basil grown with various ECs
Figure 2. Nitrogen (N) concentration of sweet basil grown with ECs ranging from 0.5 to 4 mS∙cm−1 under low (~7 mol∙m−2∙d−1) or high (~15 mol∙m−2∙d−1) daily light integrals (DLIs). Data was collected three weeks after transplanting seedlings into hydroponic systems and treatments.

What we found most interesting was that when the tissue nutrient concentrations are compared with recommended tissue concentrations for basil, the majority of values were within or above the recommended ranges, including those plants grown with the lowest EC (0.5 mS∙cm−1). For those few nutrients that were slightly below recommended values, we saw no visible signs of nutrient deficiencies and all plants, regardless of the EC, appeared healthy.

Managing Hydroponic Basil Nutrition

What are the implications of this research for managing nutrient solutions? First, the fact that most nutrients were within sufficient ranges and plants appeared healthy with no differences in yield across all of the ECs for all three species demonstrates that high-quality basil can be grown under a very wide range of ECs. This provides some opportunities and flexibility for hydroponic producers. A lower EC may help minimize fertilizer costs, whereas a higher EC may be useful to diminish the change in nutrient ratios in solution.

While not reported here, we did measure increased potassium concentrations in the nutrient solution from the beginning to the end of the production period. We attribute this increase in potassium to the potassium carbonate base we were using to increase solution pH.

Additionally, we suspect that the increased potassium concentrations may have antagonized uptake of calcium and/or magnesium. Always remember that additions to nutrient solutions such as acids or bases can add nutrients available for plants.

We were not surprised to see improved growth under the higher DLI. Previous research has reported increases in growth of up to ~500 µmol∙m−2∙d−1, so we were not surprised to see enhanced growth under the higher DLI. We were surprised to see that there was no effect of EC on basil growth. While we found that DLI affected growth, the lack of an interaction with EC to affect growth means that you do not need to change your EC as light intensity and the DLI change across seasons. While some producers lower their EC, we suspect this to be due to warmer temperatures and not higher light.

Take-Home Messages For Hydroponic Production

The bottom line is that basil grows well under a wide range of ECs. Most interestingly, basil yield, nutrient concentrations, and appearance were acceptable across ECs, even at low levels. Additionally, if there is an opportunity to increase the DLI or light intensity for basil production, basil responds very favorably to high light. Because the results may also vary across different locations, greenhouse environments, and cultural practices, as always, we encourage producers to conduct on-site trials to determine optimal nutrient-solution concentrations for the cultivars they are growing in their greenhouse environment.

Topics: ,

Leave a Reply

3 comments on “Managing Electrical Conductivity (EC) For Hydroponic Basil Production

  1. Figure 1 is incorrect. The text says that the foto shows plants and different EC’s but the foto shows plants under a temp gradient.

More From Production...
OHP PGR App

April 23, 2017

OHP Redesigns Its PGR Calculator App

The new version contains many of the same features as the previous version but now runs faster and works on all iOS device environments.

Read More
Jim Zampini

April 21, 2017

Nursery Industry Leader Jim Zampini Dies at 85

Jim Zampini, a nationally recognized nurseryman and one of the leading figures in the thriving Lake County, OH, nursery industry for more than six decades, passed away on April 15 at the age of 85.

Read More
Kemin Horticulture Trial

April 14, 2017

How to Trial a New Product Before You Use It in Your Greenhouse

Before you apply a new product on a plant, you want to make sure it is safe and effective. Technical experts from Kemin have compiled a five-step guide designed to help you measure the benefits of a new product you want to incorporate into your operation.

Read More
Latest Stories
OHP PGR App

April 23, 2017

OHP Redesigns Its PGR Calculator App

The new version contains many of the same features as the previous version but now runs faster and works on all iOS device environments.

Read More
Jim Zampini

April 21, 2017

Nursery Industry Leader Jim Zampini Dies at 85

Jim Zampini, a nationally recognized nurseryman and one of the leading figures in the thriving Lake County, OH, nursery industry for more than six decades, passed away on April 15 at the age of 85.

Read More
Kemin Horticulture Trial

April 14, 2017

How to Trial a New Product Before You Use It in Your Gr…

Before you apply a new product on a plant, you want to make sure it is safe and effective. Technical experts from Kemin have compiled a five-step guide designed to help you measure the benefits of a new product you want to incorporate into your operation.

Read More
Hydroponics Michigan State Web

April 13, 2017

Research Team Seeking Feedback From Hydroponic Growers

Are you a hydroponic grower of food crops? If so, Michigan State University and Iowa State University researchers are looking for your input.

Read More
Koppert feature

April 2, 2017

Using Bees in the Greenhouse for Natural Pollination

As the greenhouse produce industry continues to work toward keeping up with year-round demand for locally grown food, growers are finding that natural pollination is one way to increase yield, improve fruit quality, and reduce labor.

Read More
Pythium

March 27, 2017

Florida Ornamental Growers Took a Hit in 2016 Thanks to…

While damage figures from the 2015-2016 winter rains are still being compiled, researchers have found that Phytophthora and Pythium caused severe destruction in many plants.

Read More

March 20, 2017

AgBiome’s New Zio Biofungicide Receives EPA Regis…

The new biofungicide is the first product from AgBiome, and will be marketed by SePRO Corp. in the ornamentals market.

Read More

March 20, 2017

Neonic Insect Control Alternative Offers Favorable Prof…

Altus, a butenolide class insecticide with the active ingredient flupyradifurone, will be available beginning May 1, and is labeled for greenhouse and nursery use on ornamental plants, vegetable transplants, and indoor vegetable production.

Read More
RISE New logo

March 13, 2017

RISE’s New Logo Designed to Emphasize Environmental Foc…

Responsible Industry for a Sound Environment (RISE), a national association representing manufacturers, formulators, and distributors of specialty pesticides and fertilizers, has unveiled an updated logo.

Read More

February 28, 2017

OHP Launches New Ovicide/Miticide, Announces Partnershi…

Applause is a new miticide that targets eggs and immature stages of several mite species. Through the Vestaron partnership, OHP will market Spear-O, a toxin-derived bioinsecticide.

Read More

February 26, 2017

AgBiome Will Enter the Ornamentals Market With a New Bi…

AgBiome, a young company with teammates steeped in decades of experience in the crop protection world, sees an opportunity to bring products to market that fill the existing gaps in plant protection. The company has partnered with SePRO to market and distribute Zio, a biological fungicide expecting EPA registration this spring.

Read More
Remote Sensing Feature

February 12, 2017

Using Remote Sensing to Optimize IPM in Greenhouses

Researchers at the University of California Davis are developing advanced remote sensing technologies to automate detection of insect pest infestations in greenhouses, which could revolutionize integrated pest management practices.

Read More
Boxwood Blight

February 7, 2017

Boxwood Blight Detection in Illinois Has Growers on Ale…

Symptoms of boxwood blight, which can spread quickly in production facilities, include leaf spots, stem cankers, and defoliation.

Read More
cuttings-facility

February 7, 2017

Horticultural Research Institute Funding 13 Projects in…

The projects cover areas ranging from disease and weed control to improving soil health.

Read More
Effective pest control

January 12, 2017

Prevention and Early Intervention: The Keys to Biocont…

Advance preparation and starting out right helps you implement an effective biocontrol program that reduces pest pressure.

Read More
Single-internode culm cutting of purple fountain grass.

January 5, 2017

Successful Propagation of Purple Fountain Grass From Si…

In the first article of a two-part series, researchers discuss how propagation daily light integral and root-zone temperature influence root growth and development of single-internode purple fountain grass culm cuttings.

Read More
pbh-peat-mix-feature

January 2, 2017

Why You Need To Know What’s In Your Growing Media…

Before you buy growing media mixes or raw materials to mix your own custom blends, here are some important factors to consider.

Read More
Various Wood Substrates

December 18, 2016

The Evolution And Revolution Of Wood Substrates

Growing media formulations are evolving as researchers fine tune blending techniques for wood component substrate alternatives to achieve reliable, consistent results.

Read More