Managing Electrical Conductivity (EC) For Hydroponic Basil Production

Managing nutrient solutions is one of the most important responsibilities in hydroponic crop production. When managing the concentration of nutrients, we use electrical conductivity (EC) as a guide to maintaining and adjusting our nutrient levels, trying to provide adequate nutrients and minimize excessive fertilizer use. However, what EC is required for our crops? We wanted to better understand how nutrient solution EC affects basil growth and tissue nutrient concentrations under different daily light integrals (DLIs).

In an effort to provide research-based support for hydroponic basil producers, we have been conducting a suite of research studies focused on various aspects of production. We’ve already shared our results on the effects cultivars, hydroponic systems, and planting densities have on the growth and yield of basil.

Next month, we will be looking at how temperature influences basil growth and development. However, in this article we will present research on how the nutrient solution EC affects growth and tissue concentration of hydroponic basil.

Nutrient Solution ECs And Daily Light Integrals

First, we transplanted two-week-old sweet, holy, and lemon basil seedlings into nutrient-film technique (NFT) hydroponic systems with nutrient solution EC of 0.5, 1, 2, 3, or 4 mS∙cm−1.

The nutrient solution consisted of deionized water and 16N−1.8P−14.3K fertilizer (Jack’s Hydro FeEd; JR Peters), and the ECs were maintained at their target level daily by adding concentrated stock solution or clear water to raise or lower the EC, respectively. The nutrient solution pH was adjusted to 6 daily, aerated, and circulated through a heater/chiller unit to maintain a water temperature of 72°F.

Supplemental lighting was provided by HPS (high pressure sodium) lamps to increase the light intensity during the day for the plants grown under a high DLI, and provide a 16-hour day length for plants grown under both low and high DLIs. Aluminized shade cloth was also used to decrease daytime light intensity for plants grown under a low DLI. The low DLI greenhouse was maintained at a DLI of ~7 mol∙m−2∙d−1, while the high DLI greenhouse was maintained at ~15 mol∙m−2∙d−1. Three weeks after transplanting, we measured height, node and branch number, and fresh and dry mass of shoots.

Satisfactory Growth And Nutrition Observed

Basil had comparable growth (fresh and dry mass, branches, nodes) across nutrient solution ECs and there were no significant differences (Figure 1).

Figure 1. Ocimum basilicum electrical conductivity
Figure 1. Sweet basil grown with ECs ranging from 0.5 to 4 mS∙cm−1 under low (~7 mol∙m−2∙d−1) or high (~15 mol∙m−2∙d−1) daily light integrals (DLIs). This photo was taken three weeks after transplanting seedlings into hydroponic systems and treatments.

 

Although EC has no effect on basil growth, growth increased for all three basil species grown under ~15 mol∙m−2∙d−1 compared to those grown under 7 mol∙m−2∙d−1. There was no interaction between the EC and DLI on basil growth.

In addition to the growth and yield of basil, we also wanted to measure how tissue nutrient concentrations were affected by nutrient solution EC. When we looked at the nutrient concentrations, the results varied by nutrient. For example, for nitrogen, phosphorous, and sulfur, tissue concentration increased as nutrient solution EC increased from 0.5 to 4 mS∙cm−1 (Figure 2). Alternatively, calcium and magnesium tissue concentrations were lower with increasing EC.

Chart of nitrogen concentration of sweet basil grown with various ECs
Figure 2. Nitrogen (N) concentration of sweet basil grown with ECs ranging from 0.5 to 4 mS∙cm−1 under low (~7 mol∙m−2∙d−1) or high (~15 mol∙m−2∙d−1) daily light integrals (DLIs). Data was collected three weeks after transplanting seedlings into hydroponic systems and treatments.

What we found most interesting was that when the tissue nutrient concentrations are compared with recommended tissue concentrations for basil, the majority of values were within or above the recommended ranges, including those plants grown with the lowest EC (0.5 mS∙cm−1). For those few nutrients that were slightly below recommended values, we saw no visible signs of nutrient deficiencies and all plants, regardless of the EC, appeared healthy.

Managing Hydroponic Basil Nutrition

What are the implications of this research for managing nutrient solutions? First, the fact that most nutrients were within sufficient ranges and plants appeared healthy with no differences in yield across all of the ECs for all three species demonstrates that high-quality basil can be grown under a very wide range of ECs. This provides some opportunities and flexibility for hydroponic producers. A lower EC may help minimize fertilizer costs, whereas a higher EC may be useful to diminish the change in nutrient ratios in solution.

While not reported here, we did measure increased potassium concentrations in the nutrient solution from the beginning to the end of the production period. We attribute this increase in potassium to the potassium carbonate base we were using to increase solution pH.

Additionally, we suspect that the increased potassium concentrations may have antagonized uptake of calcium and/or magnesium. Always remember that additions to nutrient solutions such as acids or bases can add nutrients available for plants.

We were not surprised to see improved growth under the higher DLI. Previous research has reported increases in growth of up to ~500 µmol∙m−2∙d−1, so we were not surprised to see enhanced growth under the higher DLI. We were surprised to see that there was no effect of EC on basil growth. While we found that DLI affected growth, the lack of an interaction with EC to affect growth means that you do not need to change your EC as light intensity and the DLI change across seasons. While some producers lower their EC, we suspect this to be due to warmer temperatures and not higher light.

Take-Home Messages For Hydroponic Production

The bottom line is that basil grows well under a wide range of ECs. Most interestingly, basil yield, nutrient concentrations, and appearance were acceptable across ECs, even at low levels. Additionally, if there is an opportunity to increase the DLI or light intensity for basil production, basil responds very favorably to high light. Because the results may also vary across different locations, greenhouse environments, and cultural practices, as always, we encourage producers to conduct on-site trials to determine optimal nutrient-solution concentrations for the cultivars they are growing in their greenhouse environment.

Topics: ,

Leave a Reply

2 comments on “Managing Electrical Conductivity (EC) For Hydroponic Basil Production

  1. Figure 1 is incorrect. The text says that the foto shows plants and different EC’s but the foto shows plants under a temp gradient.

More From Production...
Aphids On Older Leaves

July 25, 2016

How You Can Stop Aphids By Understanding Their Interactions With Plants

Knowing which aphids target which crops and how aphids colonize and move on plants goes a long way toward setting up an effective management plan.

Read More
Roots with plant media background XL-W

July 2, 2016

University Of Florida Offering Online Nutrient Management Course In July

Topics include common nutrient problems, essential nutrients, fertilizer types, how to interpret a fertilizer label, managing total nutrient level, pH, and EC, onsite testing, and growing media.

Read More
Eretmocerus eremicus adult, Parasitic Wasp

July 2, 2016

Beneficial Predators Can Help Control Whiteflies On Poinsettia

Whitefly infestations are a reccuring problem that often plagues poinsettia growers. Successfully keep them in check by letting beneficial predators take the work out of pest control.

Read More
Latest Stories
Aphids On Older Leaves

July 25, 2016

How You Can Stop Aphids By Understanding Their Interact…

Knowing which aphids target which crops and how aphids colonize and move on plants goes a long way toward setting up an effective management plan.

Read More
Roots with plant media background XL-W

July 2, 2016

University Of Florida Offering Online Nutrient Manageme…

Topics include common nutrient problems, essential nutrients, fertilizer types, how to interpret a fertilizer label, managing total nutrient level, pH, and EC, onsite testing, and growing media.

Read More
Eretmocerus eremicus adult, Parasitic Wasp

July 2, 2016

Beneficial Predators Can Help Control Whiteflies On Poi…

Whitefly infestations are a reccuring problem that often plagues poinsettia growers. Successfully keep them in check by letting beneficial predators take the work out of pest control.

Read More
University of Georgia Trial Gardens

June 30, 2016

First-Ever Academy Of Crop Production Offers Snapshot O…

Hosted by the Georgia Green Industry Association and the University of Georgia Department of Horticulture, the three-day conference covered everything from unmanned aerial vehicles to remote-sensing greenhouse control systems.

Read More
Greenhouse Whitefly

June 26, 2016

Michigan State University Offers Tips On Whitefly Manag…

Whiteflies are making headlines in Florida, but they are found across the U.S. Michigan State experts say it’s important to know how to manage each type of whitefly.

Read More
BASF Orkestra Intrinsic

June 21, 2016

New Mode Of Action From BASF Offers Deeper Disease Cont…

When it comes to disease control, you need all the help you can get. BASF recently hosted growers, Extension personnel, and trade media to present its newest fungicide with two active ingredients, offering dual modes of action.

Read More
GrowSpan Series 1000 Commercial Greenhouses (Growers Supply)

June 5, 2016

Growers Supply Hosting Controlled Environment Agricultu…

The workshop offers participants an education-filled, three-day schedule in which Growers Supply experts and industry specialists educate attendees on the latest trends in current and innovative growing techniques, such as hydroponics, aquaponics, and microgreen production.

Read More
Nematodes-feature

June 4, 2016

New Biocontrols Provide Effective Pest Control In Green…

Biological chemistry manufacturers have introduced several new products recently that offer a range of insect and disease management options. Here’s a look at some of them.

Read More
Whitefly

June 2, 2016

Breaking News: Florida Growers Reporting Major Whitefly…

Reports have come from the Florida Keys to Palm Beach County that whitefly populations in landscapes are reaching unprecedented levels and are not responding to pesticide applications. Biotype-Q has been found in four different communities. University of Florida/Institute of Food and Agricultural Science researchers are working with USDA-APHIS, USDA-ARS, the Florida Department of Agriculture, and growers and landscape professionals to manage the developing problem.

Read More
Triathlon BA container shot

May 24, 2016

OHP’s Triathlon Biofungicide Now Listed By The Organic …

Triathlon BA is a broad-spectrum preventative biofungicide that provides control of many foliar and soilborne diseases in ornamentals and herbs.

Read More
Pythium On Chrysanthemum

May 20, 2016

How To Prevent Pythium In Fall Garden Mums

Avoid profit loss in fall garden mums due to pythium root rot with good drainage and integrated pest management practices that reduce risk factors.

Read More
Agro-K

May 19, 2016

Agro-K Expands Distribution In New England Through Part…

Agro-K, which manufactures conventional and organic foliar plant nutrients, will distribute its full line of foliar fertilizers and soil biological products through NEAG.

Read More
Stained poinsettia foliage from high iron

May 19, 2016

Minimize Build-up In Your Water Pipes

This article is the third in a series of case studies designed to help growers reduce, remediate, and recycle irrigation water as part of a multi-state research grant (CleanWateR3.org).

Read More
pond water management

May 16, 2016

Pinpoint Toxicity In Your Pond Water

This article is the second in a series of case studies designed to help growers reduce, remediate, and recycle irrigation water as part of a multi-state research grant (CleanWateR3.org).

Read More
MSU Guide To Attracting Pollinators

May 14, 2016

New Online Guide Offers Tips On Enhancing Pollinators I…

The guide, produced by a team of researchers from Michigan State University and elsewhere, includes information on plants that attract pollinators and offer an ideal habitat.

Read More
Two-spotted spider mites, adults and eggs

May 11, 2016

SePRO Launches Summer Insecticide Management Program Fo…

The program is designed to help growers use SePRO’s insect management tools to prevent plant damage from a variety of pests.

Read More
Mum With and Without Ammonium Toxicity

May 5, 2016

How Nitrogen Influences The pH Of Your Growing Medium

In standard greenhouse fertilizers, nitrogen is supplied as ammonium, nitrate, or urea. Each of these three nitrogen sources, when taken up by plant roots, produces different chemical reactions with differing effects on the growing medium pH.

Read More
As the pots continue around the carousel, bark is pushed into the pots and settles around the roots, which helps to avoid compaction in the growing media

May 5, 2016

Three Factors That Can Impact The pH Of Growth Media

Water alkalinity, fertilizer, and plant species can each play a role in the pH of your growth media.

Read More
[gravityform id="35" title="false" description="false"]