Producing Consumer-Friendly Baskets

Producing Consumer-Friendly Baskets

Growers have come under pressure to improve the lasting quality of their containerized plants. In this six-part series, we will discuss a number of options for making baskets and large containers more consumer friendly. In part one, we will discuss media selection and available water-holding capacity and their effects in keeping plants alive through the summer. The key concept is that containers with high available water-holding capacity require less irrigation by the consumer, but require extra care to avoid overwatering during greenhouse production. 

Understanding Physical Properties

A container root medium is like a sponge. A sponge is made up of holes (called pore spaces) and solids (the medium itself). If you soak the sponge in water and then allow it to drain, the larger holes (called macropores) will have drained and now be filled with air (air space). The smaller holes (called micropores) will have retained the water (water space). The exact ratio between air and water will depend on the height of the sponge (height of the pot), with tall sponges having, on average, more air space and less water space than a shorter sponge.

The maximum volume of water that a root medium can hold after an irrigation (water holding capacity) therefore depends on the physical properties of the root medium, along with the height and volume of the container.

The water held in a root medium can be further broken down into two fractions, available water and unavailable water. Available water is the fraction the plant can extract from the root medium and use for transpiration. Unavailable water is the fraction that is bound so tightly to the medium itself that the plant can not extract it. In general, most of the water contained in a soilless root medium is available to the plant. 

Available Water-Holding Capacity

Available water-holding capacity of the root medium is one of the better predictors in how long a plant in a large pot or basket will go between waterings.

In evaluations of impatiens grown in 10-inch hanging baskets testing different components blended with one type of peat, available water-holding capacity of the blends increased in the order: polystyrene < perlite < vermiculite < rockwool (Figure 1). The 100 percent peat medium had an available water-holding capacity similar that of the peat/vermiculite blend.

After being grown nine weeks in a greenhouse and 11 weeks outside, plants grown in the peat/polystyrene, peat/vermiculite and peat/rockwool blends were similar in size, while the plants grown in the peat/perlite and 100 percent peat media were noticeably smaller. For similar size plants, the average days between watering was 3.5 for the peat/polystyrene, 4.8 for the peat/vermiculite and 6.1 for the peat/rockwool.

Another gauge of a root medium’s ability to supply water to a plant is the minimum days to water, which is a measure of an available water supply during to the plant under hot, dry conditions. This also increased from one day for the peat/polystyrene, two days for the peat/vermiculite and three days for the peat/rockwool.

In a separate experiment testing impatiens grown in 18 commercially prepared root media, the available water-holding capacity ranged from 51 fl. oz. (1.5 liters) to 77 fl. oz. (2.3 liters). Average days between watering ranged from 3.7 to 6.3 days and minimum days between watering ranged from two to four days while being grown outside during the summer.

In this second group of experiments, neither the available water-holding capacity nor the time between watering could be predicted by the components used to produce the root medium. For example, a root medium containing a fine peat with polystyrene had a greater available water-holding capacity compared to a course peat/perlite/rockwool medium.

The difficulty in predicting available water-holding capacity based only on the formulation of the media is that different grades of each component will vary in their water-holding capacity. For example, fine peat tends to hold more water than course peat. Several alternative component/peat blends can end up having identical available water-holding capacities. If you are considering a change in root media and you want to use high available water-holding capacity as criteria, then you need to be able to measure it in your greenhouse to make comparisons (see sidebar).

Test Available Water-Holding Capacity Yourself

All that you need to determine the available water-holding capacity of a root media is a scale and a thoroughly rooted impatiens basket or pot (four to six weeks after planting). Impatiens and New Guinea impatiens work best since the foliage quickly wilts when the available water is gone and the foliage is remarkably tolerant to wilting, so you can test the same pot multiple times.

First, water the basket the way you think it will be watered or with a hose until water starts draining. Wait until drainage stops and weigh the basket. Allow the basket to dry until you observe wilting and weigh the basket again. The difference between the weight after watering and at wilt is the available water-holding capacity. (1,000 gram equals 1 liter; 1 lb. is approximately 16 fl. oz. of water).

Problems With High Available Water-Holding Capacity Media

A reason often used by growers when choosing a root medium for basket or large pot production is “good drainage.” By this they mean small plugs can be directly planted into the basket in January or February, placed on drippers and have low risk of overwatering. Remember, a pot or basket has a fixed volume, so using root media with higher available water-holding capacities can cause some challenges.

With high available water-holding capacity media, there are several management strategies to prevent over watering early in production:

1) Transplanting larger plant material with a more developed root system;

2) Maintaining the baskets on a bench or floor close together for the first few weeks so watering can be more controlled and possibly done by hand;

3) Production in baskets with external saucers that can be left off to provide drainage during production but attached prior to shipping to increase the amount of water retained; and

4) Instructing growers to weigh baskets and not to water until they reach a predetermined weight. These methods may not be practical due to scheduling and labor concerns but should be considered.

Available water-holding capacity is a key criteria for producing consumer-friendly baskets and large pots. Next month, we’ll discuss other ways to extend the time between waterings.

Leave a Reply

More From Media...
Iron and Manganese toxicity in geranium

June 13, 2017

Are Your Geraniums Showing Signs of Iron or Manganese Toxicity? It May Be Due to Low pH Levels

Zonal geraniums with low pH can exhibit iron and manganese toxicity symptoms, including marginal chlorosis, leaf speckling, and upward-cupping of the leaves, according to Michigan State University experts.

Read More
GrowTech CatEyePlug Feature

June 6, 2017

Grow-Tech Introduces New Media Plug, Joins Dümmen Orange Team

Grow-Tech LLC, a designer and manufacturer of stabilized growing media products, is making waves this week with the launch of a new plug and an announcement that it is joining forces with Dümmen Orange.

Read More
rhp-substrates-root-problems-web

May 9, 2017

How to Test and Correct for Low Substrate pH in Your Growing Media

If you mix your own or purchase a pre-mixed substrate, it is recommended you determine the initial pH. In too many cases, growers end up discovering low substrate pH.

Read More
Latest Stories
Iron and Manganese toxicity in geranium

June 13, 2017

Are Your Geraniums Showing Signs of Iron or Manganese T…

Zonal geraniums with low pH can exhibit iron and manganese toxicity symptoms, including marginal chlorosis, leaf speckling, and upward-cupping of the leaves, according to Michigan State University experts.

Read More
GrowTech CatEyePlug Feature

June 6, 2017

Grow-Tech Introduces New Media Plug, Joins Dümmen Orang…

Grow-Tech LLC, a designer and manufacturer of stabilized growing media products, is making waves this week with the launch of a new plug and an announcement that it is joining forces with Dümmen Orange.

Read More
rhp-substrates-root-problems-web

May 9, 2017

How to Test and Correct for Low Substrate pH in Your Gr…

If you mix your own or purchase a pre-mixed substrate, it is recommended you determine the initial pH. In too many cases, growers end up discovering low substrate pH.

Read More
pbh-peat-mix-feature

January 2, 2017

Why You Need To Know What’s In Your Growing Media…

Before you buy growing media mixes or raw materials to mix your own custom blends, here are some important factors to consider.

Read More
zenplug-with-orchid-from-grow-tech

December 25, 2016

Grow-Tech Patents Plug Designed for Tissue Culture

The ZenPlug from Grow-Tech is used for tissue culture in orchids and difficult-to-root cuttings, and is one of several products recently developed by Grow-Tech.

Read More
Various Wood Substrates

December 18, 2016

The Evolution And Revolution Of Wood Substrates

Growing media formulations are evolving as researchers fine tune blending techniques for wood component substrate alternatives to achieve reliable, consistent results.

Read More
oasis-grower-solutions

December 17, 2016

New Growing Media Technology Designed To Promote Health…

Oasis Grower Solutions recently launched several new innovations that support plant growth and health all the way to maturity.

Read More
mycoapply-from-mycorrhizal-applications-feature

December 5, 2016

New Growing Media Advancements Giving Growers More Opti…

With innovative, sustainable growing media components, growers will be able to improve plant health, achieve consistency among crops, save money, and reduce inputs, while saving space on storage.

Read More
growing-media-december-2016-feature

November 27, 2016

How The Sustainability Movement Impacts Growing Media

As consumers continue to focus on sustainability, growers need cost-effective media additives and options that produce high-quality plants, all while conserving precious natural resources and reducing the grower’s carbon footprint.

Read More
berger-forest-gold-feature

November 6, 2016

Growing Media Suppliers Are Focusing On Consistency

Here’s what three companies are doing to educate growers, while delivering products tailored to their specific needs.

Read More
Pindstrup Logo

October 6, 2016

Pindstrup Groups Open Modern Wood Fibre Plant In The Ba…

The Pindstrup Group recently opened a new wood fibre plant near Riga, Latvia, for the production of Forest Gold, a new component for growing media.

Read More
inorganic-media components

October 6, 2016

Online Learning Center Features Advice On Growing Media

This grower resource features videos and articles on how growers can most effectively promote plant health.

Read More
rhp-substrates-root-problems-web

October 5, 2016

How The Wrong Substrate Can Increase Potential For Root…

RHP, a European knowledge center for substrates and growing media, recommends using airy substrates in winter to provide more oxygen to the plant.

Read More

September 22, 2016

Peat Moss Supplies Look To Be Down In 2016

The annual harvest update from the Canadian Sphagnum Peat Moss Association calls for below-average numbers in several major production areas.

Read More
LM-Bark 1 (Lambert Peat Moss)

August 3, 2016

Learn The Basics Of Growing Media From Texas A&M Un…

The Texas A&M University AgriLife Extension website offers growers a primer on growth media, from the most common types of materials to how to prepare them.

Read More
Penn State Plant Bud

August 3, 2016

Penn State University Offers Recipe For Potting Media

A mix of peat moss, vermiculite, or perlite, and compost or organic fertilizers, can provide a suitable environment with sufficient water-holding capacity, nutrient content, and aeration for plant growth and development.

Read More
Mum With and Without Ammonium Toxicity

May 5, 2016

How Nitrogen Influences The pH Of Your Growing Medium

In standard greenhouse fertilizers, nitrogen is supplied as ammonium, nitrate, or urea. Each of these three nitrogen sources, when taken up by plant roots, produces different chemical reactions with differing effects on the growing medium pH.

Read More
As the pots continue around the carousel, bark is pushed into the pots and settles around the roots, which helps to avoid compaction in the growing media

May 5, 2016

Three Factors That Can Impact The pH Of Growth Media

Water alkalinity, fertilizer, and plant species can each play a role in the pH of your growth media.

Read More