Save Water With Automation And Sensors

Rosemary grown in a moisture sensor automated irrigation system maintained at moisture contents ranging from 5 percent to 35 percent.

Automating irrigation is a great way to save water. One of the latest innovations in irrigation automation is the use of substrate moisture sensors to trigger irrigation. These sensors are relatively inexpensive and, when used, can conserve water and, consequently, reduce pollution and the amount of money spent on electricity for pumps in wells. A wide variety of annual and perennial plants may be irrigated with as little as 0.3 to 1.3 gallons of water for the entire cropping cycle using substrate moisture sensors.

Sensors Ensure Proper Substrate Moisture For High-Quality Plants

Most substrate moisture sensors literally measure the amount of water in soils. This is usually expressed by volume, as the ratio of the volume of water to the volume of substrate in a pot (substrate moisture content percent = (volume of water xvolume of substrate) / 100).

In peat-based substrates, the substrate moisture content of 45 to 50 percent is near container capacity. Rosemary plants grown at 5 percent moisture content in a peat-and-perlite substrate are dead, while those at 30 percent or greater are high-quality, large plants (see photo above).

Sensors may be used in a wide variety of substrates (peat-based mixtures, rockwool, perlite). However, the percentage of moisture applied may vary depending on the substrate you use. If the rosemary had been grown in a well-drained substrate with bark, the substrate would drain much more quickly and the percentages needed to maintain high-quality plants may be higher. If you are using moisture sensors in your own custom mix, consider trying different moisture contents on a small number of plants to determine the correct set point for your irrigation system.

New Moisture Sensors Measure Irrigation And Fertigation

There are many sensors available for growers, and they vary in cost and reliability. Some moisture sensors are sensitive to electrical conductivity and temperature, so it is important to select a sensor that provides reliable measurements when the environmental conditions within your greenhouse are normal.

A common type of sensor consists of two electrodes separated by a material called a dielectric. Greenhouse potting media or substrates are dielectric, a property that is highly dependent on the moisture content. These sensors have a fast response time with short probes for measuring pot moisture and are relatively inexpensive.

The sensors vary in size from 4 inches (EC-10) to 2 inches (EC-5), so they are small enough to fit in a 4-inch pot, but not a plug tray. While these sensors are useable within a wide range of electrical conductivities, topdressing or dibbling very close to the sensor causes faulty measurements. Using liquid feed or incorporating slow release or dibbling fertilizers away from sensors will provide better results. New sensors measure substrate moisture, electrical conductivity and temperature. These sensors provide growers with the possibility of integrating irrigation and fertigation measurement and automation.

Integrating Sensors Into A Greenhouse Irrigation System

Moisture sensors are primarily used to automate irrigation in drip irrigation systems but have also been used in capillary mat systems. For drip irrigation, sensors are inserted so that they are vertical at a 45-degree angle in the pot. Since the sensors take the average measurements along the length of the sensor, inserting them vertically ensures that you are measuring in the root zone.

Many growers are concerned about spatial variation in greenhouses – how many sensors do you need to automate a bench? What about a greenhouse? If you have one sensor automating an entire bench, variations in light along the bench may cause some plants to dry out faster than other plants. This is something to keep in mind when designing a system. When designing a drip system with sensors, it is advisable to group plants according to size. Sensors used to automate irrigation should be placed on the bench in spots you anticipate drying out first – this could be the largest plants or corners and edges. Plants that will dry out more slowly (small plants or those in the center of the bench) could contain sensors for monitoring to prevent excessive irrigation or disease problems. Using sensor-automated irrigation actually prevents pathogens and associated economic costs.

At the University of Nebraska-Lincoln, capacitance moisture sensors have been used as part of an automated irrigation system using a capillary mat system for greenhouse strawberry production. This system is a spatial-bottom watering system that depends on capillary action to move water and fertilizer from a saturated mat to the roots in a pot. Once the capillary column is established, pots on the mat cannot be moved. Therefore, it is important that the grower know that his irrigation system is working correctly and that his potted plants are receiving the correct amounts of water and fertilizer. Some variance in pot moisture and fertilizer is always to be expected, so measuring selected pots in key spatial locations of the mat will inform growers that the system is providing sufficient moisture.

In the Nebraska study, researchers selected six sensor locations for pots on the mat, including a southern location near the emitter manifold, the middle of the mat and the north end of the mat. The middle of the mat was most crucial because this was the location in the greenhouse that received the most sunlight during the day.

Pot moisture and electrical conductivity can be spot-checked daily with a capacitance sensor and a hand-held meter or monitored more frequently when using a data logger system with sensors kept in a pot. Spot checking should be done during the sunny periods when plant water use is expected to be the greatest. Plants must be visually inspected on a daily basis, as inspections are a key indicator of irrigation performance.

Substrate moisture sensors are a great way to reduce pathogens and water waste and save money when you are automating irrigation in your greenhouse. Sensors may be used in drip irrigation or capillary mat systems, and it is likely that in the future, they may be used to automate other sustainable irrigation systems such as sub-irrigation, as well.

Topics:

Leave a Reply

2 comments on “Save Water With Automation And Sensors

More From Special Series...
More and more people are employing a landscape service, but that doesn’t mean they don’t still garden

September 2, 2015

Under Siege? Not Really, Just Go For A Walk

I have no trouble with people buying chocolates or wine instead of flowers to celebrate anniversaries, birthdays or peoples’ lives. We should all have choices. However, the other night I felt like I was entering the Republican caucus. I was minding my own business by the television set and became more than a little upset. A website called insteadofflowers.com came on the screen. It provided serene music and wholesome images of busy women doing busy things. It turns out that such busy women enjoy a small token of appreciation, but apparently their enjoyment, according to the voice-over, does not include flowers. This website delivers meals to the house, anything from beef brisket to beef bourguignon. It is a fine website with a good idea. But why pick on us? Why not use “insteadofbaloneysandwiches.com” or “insteadofgrilledcheeseandsoup.com,” “insteadofburgerdoodle.com,” or a dozen other things. When did flowers get to be the whipping boy? […]

Read More
Triathlon BA container shot

September 2, 2015

OHP Launches Triathlon BA, Offers Marengo SC In Smaller Size

Triathlon BA biofungicide/bactericide is now available to authorized OHP distributors for shipment to states where product registration has been approved. State registration information is available here. A next generation preventive biological fungicide, bactercide Triathlon BA is labeled for use in both organic and conventional production on a wide variety of fungal and bacterial diseases on ornamentals, fruits, vegetables and herbs and spices. With the active ingredient Bacillus amyloliquefaciens, Triathlon BA provides preventive control of many foliar and soil-borne diseases such as botrytis, powdery mildew, downy mildew, rusts, leaf spots, alternaria, pythium, phytophthora, rhizoctonia, fusarium and bacterial spot. Triathlon BA, an aqueous suspension formulation, prevents establishment of disease-causing fungi and bacteria on the plant tissues. Depending on the target disease, users can foliar-apply or soil drench Triathlon BA. Repeat applications may be made at three- to 28-day intervals. Under environmental conditions that are conducive to disease development, users may apply at three- to […]

Read More

September 2, 2015

Delegation Is Key To A Successful Greenhouse Operation

In a packed room at Cultivate’15, speaker Bernie Erven presented key steps growers need to take to improve their delegation skills, the benefits of delegating and the dangers of not learning how to delegate. This is a skill, he says, that everyone needs to learn. “For all of you who are part of a family business, you are choosing not to do things the easy way,” Erven laughed, as he presented a list of ways to know whether or not you’re an effective delegator. The owner of Erven HR Services, LLC, Erven has been working with and observing family businesses for many years. In his presentation, he said, he didn’t share anything that he hasn’t seen first-hand. You might not be a good delegator if you: Tend to be a perfectionist Work more hours than anyone else Lack time to explain clearly and concisely Are often interrupted Enjoy what you used to […]

Read More
Latest Stories
cannabis, marijuana plant

June 27, 2015

Concern Grows Over Unregulated Pesticide Use On Cannabi…

As most growers know well, the federal government regulates all insecticides, fungicides, herbicides and other commercial chemicals used on agricultural crops. Therein lies the problem with use of chemicals on cannabis crops – so far, the feds want nothing to do with legalized marijuana. According to “Concern Grows Over Unregulated Pesticide Use On Cannabis,” a June 17 article on the National Public Radio (NPR) network by Agribusiness Reporter Luke Runyon, the lack of regulated chemicals for cannabis has left growers to experiment on their own. “In the absence of any direction the subject of pesticide use on the crop has just devolved to whatever people think is working or they think is appropriate,” said Colorado State University Entomologist Whitney Cranshaw in the NPR report. “Sometimes they’ve used some things that are appropriate, sometimes unsafe.” Denver officials held tens of thousands of marijuana plants earlier this year due to safety concerns, but […]

Read More

January 29, 2014

Growing Seedlings Under LEDs: Part Two

In the second part of a two-part series, Michigan State University researchers share their findings in germinating seedlings with LED lights.

Read More

December 4, 2013

Plant Breeder Yasuko Isobe: Consumer Lifestyles Will De…

People are more conscientious about living healthy lives and protecting the environment, says this Suntory Flowers breeder.

Read More

December 2, 2013

Plant Breeder Troy Thorup: If Consumers’ Needs Ar…

Troy Thorup breeds various seed and vegetative annual bedding plants for PanAmerican Seed. He has been a breeder for 13 years and holds a Ph.D. in plant genetics and breeding GG: What crops do you feel will be relevant and important over the next 30 years? Thorup: Anything that can balance the combination of beautiful and hard to kill. GG: Will the fervor for all new varieties continue in the industry? Will breeders begin to focus on filling consumers’ needs? Thorup: In my breeding, I don’t view these two things as separate issues. My goal in creating new varieties is largely driven to fulfill consumers’ needs. At the end of the day, if the consumers’ needs aren’t met, they will not buy the product. GG: How will breeders address needs to reduce chemicals by increasing crop resistance to pests and diseases? Thorup: This is a tough question to answer concisely […]

Read More

December 2, 2013

Plant Breeder Jason Jandrew: Multifunctional Plants Are…

This young breeder for Ball Horticultural Co. says breeders can take a cue from cell phones: keep adding features.

Read More

December 2, 2013

Plant Breeder Hans Hansen: The Future’s Plants Wi…

Hans Hansen is the director of new plant development, heading up the hybridizing department for Walters Gardens Inc. in Zeeland, Mich. A graduate of the University of Minnesota, Hansen has been hybridizing plants since he was in high school. At Walter’s Gardens, he manages perennial crops including hemerocallis, hostas, monardas, digitalis, baptisias, leucanthemums and ferns, among others. What direction do you feel breeding is headed? We are living in an absolutely incredible time to be a plant breeder. Recent advancements in science and technology are opening an entirely new direction and present fascinating new opportunities for hybridizers. These include new species recently being discovered, mutagenic plant breeding, new classifications of plants based on scientific studies and new tools not available previously. The internet has turned the world into a very small place. What crops do you feel will be relevant and important over the next 30 years? With the general […]

Read More

December 2, 2013

Plant Breeder Brent Horvath: Grasses Are A Breeding Foc…

Brent Horvath is the owner of Intrinsic Perennial Gardens, Inc., headquartered in Hebron, Ill. Horvath grew up in the industry, working at his parents’ garden center and florist shop. He holds a degree in ornamental horticulture from Oregon State University and today, he grows a wide range of perennials and ornamental grasses. GG: How long have you been a breeder or studying to be a breeder? Horvath: I started in the mid ’90s. After I read Alan Bloom’s Hardy Perennials book, where he talked about how many of his introductions came about, I really started becoming more interested in selecting and breeding. GG: What direction is your breeding career taking? Horvath: As a perennial grower with ornamental grasses being a big part of our production and sales, I focus on those plants that sell well for me. Half of my business is to landscapers and around 20 percent to retailers. […]

Read More

December 2, 2013

Plant Breeder Amanda Hershberger: Pest And Disease Resi…

Amanda Hershberger is a plant breeder for Syngenta. She holds a B.S. in horticulture from Purdue University and an M.S. and Ph.D. in horticulture from the University of Georgia. GG: How will breeders address needs to reduce chemicals by increasing crop resistance to pests and diseases? How far away is this technology? Hershberger: Resistance breeding is vital to the success of many crops and reduces the need for chemical control, as well as reducing the pest’s development of resistance to a chemical control. My personal work experience involves resistance of vinca to Phytophthora. Breeding for pest and disease resistance in ornamental plants has primarily utilized traditional breeding methods. Resistance breeding has also included molecular methods for problems such as black spot in rose and Fusarium in carnation. Agronomic crops have really paved the way for resistance development using molecular markers. I foresee a greater use of molecular techniques to achieve resistance […]

Read More

December 2, 2013

Plant Breeder Joseph Tychonievich: Rock Gardening Will …

Take a look at the other trends Tychonievich says he sees shaping the next 30 years of the greenhouse industry.

Read More

December 2, 2013

Plant Breeder Kelly Norris: Breeders Must Be Champions …

Kelly Norris is currently the horticulture director at the Greater Des Moines Botanical Garden and he holds two degrees (B.S., M.S.) in horticulture from Iowa State University. Norris has been part of the industry since age 15, when he talked his parents into buying a nursery and moving it from Texas to their family farm in Iowa. As the owner of Rainbow Iris Farm, he started breeding irises 12 years ago and continues to focus on breeding independently, as well as in the new breeding program at the botanical garden. GG: As a young breeder, what direction do you feel breeding is headed? Norris: I feel there are two kinds of plant breeders entering the market today. There are those coming of out graduate school looking for jobs in the industry (which aren’t plentiful) and end up toiling away with petunias and commodity crops. I feel for them. Then there […]

Read More

December 2, 2013

Plant Breeder Ockert Greyvenstein: Minimal Inputs Are A…

Greyvenstein also says edible landscapes and hardy grasses will become more relevant floriculture crops.

Read More

December 2, 2013

Plant Breeder Ping Ren: Breeding Must Meet Consumer And…

Jianping (Ping) Ren breeds various seed and vegetatively propagated annuals and perennials for PanAmerican Seed, where she has worked for 13 years. Ren received a Ph.D. in plant breeding in 1998 at Cornell University. Before coming to the floriculture industry, Ren was a vegetable breeder in China with a focus on Brassica vegetables. GG: Will the fervor for all new varieties continue in the industry?  Ren: There are so many new varieties each year. It can be confusing and sometimes difficult for growers and consumers to keep up. But we are all looking for “new” things all the time. There has to be something “new” each year. Of course, some new varieties are new for certain improved traits, which are necessary and can benefit breeding companies (high yield, reduced cost), growers (high germ, more uniform) and consumers (better color and garden performance). The more exciting new for the industry is “true” new […]

Read More

December 2, 2013

Today’s Breeders On Tomorrow’s Plants

One of the future challenges is the continuing need for new and improved crops for the consumer. Make no mistake about it, new crops — and new breeders — are the lifeblood of this industry.

Read More

November 14, 2013

The Basics & Beyond: Understanding The Differences …

As I talk to growers around the country, I often find that there is confusion between (1) photoperiodic lighting used to create a long day for flower induction of long-day plants and (2) supplemental lighting used to increase the total quantity of photosynthetic light received over the course of the day, which is referred to as daily light integral (DLI) in the greenhouse. For more information on DLI, please visit http://bit.ly/11x79eK To add to the confusion, supplemental lighting is sometimes referred to as photosynthetic or assimilation lighting. In this article, I will attempt to clarify the differences to assist you in selecting the appropriate lighting strategy for your greenhouse crops. Understanding Photoperiodic Lighting The number of hours of light in a 24-hour period (photoperiod) controls flowering of both short-day and long-day crops. It is actually the uninterrupted period of darkness that controls flowering responses. Long-day plants are those that only flower […]

Read More

November 14, 2013

Comparing LED Lighting To HPS Lamps For Plug Production

Research at Purdue University is determining how LEDs, providing light of different wavelengths, compare to traditional high-pressure sodium lamps.

Read More

August 6, 2012

Capillary Mats Are Back

Thirty years ago, capillary mats were used for production of floricultural pot crops like Easter lilies. The advantage was that plants could be grown practically pot-to-pot, thus maximizing plants per square foot. Also, since Easter lilies grow best when fertigated with tempered water delivered on a uniform schedule, the capillary mat was ideal. During the 1990s, capillary mats for growing plants fell out of favor as a fertigation method when compared to drip irrigation and other sub-irrigation methods. However, recent advances in electronic controls, mat composition and the use of a drip tape to deliver water directly to the mat at even locations, make cap-mat watering worthy of another look. Combine this with concerns about groundwater contamination, quantity, quality and costs associated with water usage, cap mats and their low-water requirements will certainly come back into the greenhouse growing picture. There are a number of capillary mat types available, each […]

Read More

July 9, 2012

Save Water With Automation And Sensors

Automating irrigation is a great way to save water. One of the latest innovations in irrigation automation is the use of substrate moisture sensors to trigger irrigation. These sensors are relatively inexpensive and, when used, can conserve water and, consequently, reduce pollution and the amount of money spent on electricity for pumps in wells. A wide variety of annual and perennial plants may be irrigated with as little as 0.3 to 1.3 gallons of water for the entire cropping cycle using substrate moisture sensors. Sensors Ensure Proper Substrate Moisture For High-Quality Plants Most substrate moisture sensors literally measure the amount of water in soils. This is usually expressed by volume, as the ratio of the volume of water to the volume of substrate in a pot (substrate moisture content percent = (volume of water xvolume of substrate) / 100). In peat-based substrates, the substrate moisture content of 45 to 50 […]

Read More

April 26, 2012

Subirrigation: Watering From The Ground Up

The goal for any irrigation system is to deliver water to the growing medium as effectively and efficiently as possible. Effectively means getting the right amount of water into the growing medium. Efficiently means minimizing the amount of water that is lost from the system.  In order to irrigate effectively, an irrigation system must deliver water uniformly to every pot in an irrigation zone. An efficient irrigation system will either deliver water with minimal leaching and runoff or capture and reuse all the water that is not retained in the growing medium. Sub-irrigation systems are generally both more effective and efficient than top-down systems. These systems include capillary mats, troughs, flood and drain trays and flood floors. Capillary Mats The simplest form of sub-irrigation, in these systems water is delivered to a porous mat that is in contact with the bottom of the container. This allows water to move from […]

Read More