Chlorine Dioxide In Horticulture: A Technology Review

Chlorine Dioxide In Horticulture: A Technology Review

Horticultural operations are facing increasing pressure to solve sanitation issues related to water treatment. Some of the pressure is external originating from government regulations and consumer preferences. Most of the pressure, however, is internal and includes better disease management, integrating capture of irrigation runoff with recycling opportunities, elimination of biofilm and algae control.

The list of available water treatment technologies is a short one. When the unusual demands of horticultural production and post-production practices are considered, the list of technologies that offers effective solutions becomes even shorter. Chlorination, ultraviolet light, chlorine dioxide, ozone, copper and peroxide comprise the list most growers are considering. This article will present a technology review of chlorine dioxide and discuss its potential to solve sanitation issues in greenhouses and nurseries.

Biofilm, Sanitation’s Epicenter

Biofilm is a living complex of organic and inorganic components that becomes established on surfaces that are in regular contact with water. Such surfaces include pressurized irrigation lines, non-pressurized recirculation system return lines, holding tanks, mixing tanks, containment vessels and so on. Largely comprised of highly adaptive bacteria, biofilm layers attach themselves to hard surfaces and then grow, becoming thicker and quite established over time.

In horticultural operations such as greenhouses and nurseries, common fertilizer injection actually serves as an accelerant to biofilm growth. Most growers are quite familiar with the presence of biofilm in their fertilizer lines. The layer of slimy growth is seen whenever a line is cut into for repair. Biofilm growth is not restricted to fertilizer lines, however, and is also common in clear water lines, although usually by a slightly less dramatic presence.

An interesting relationship exists between the bacterial complexes making up biofilm and algae. The relationship is a synergistic one; what one needs the other provides. In fact, they work so well together that biofilm is able to provide algae with sufficient energy to substitute for algae’s need for sunlight. Any grower who has scratched his or her head after cutting into an underground pipe and found it lined with green, algae-laden biofilm in the absence of sunlight has personally experienced this phenomenon. Consider this a highly evolved organic system, one that has survived the test of time.

It’s no wonder most water treatment technologies are not capable of breaking biofilm down. The photo at left shows sections of PVC pipe cut longitudinally to show the inner surface; top–new line, middle–clear water line showing tan colored biofilm contamination, bottom–fertilizer line showing algae and biofilm complex.

Chlorine Dioxide’s Potential

Chlorine dioxide is widely viewed as one of, if not the most effective, sanitizing agents created by man. A decade ago when the Hart Senate building in Washington, D.C. was infested with anthrax, it was chlorine dioxide that was used to disinfest the building. In that application, the building was gassed with chlorine dioxide. In horticulture it is injected via its liquid state into irrigation lines.

One property of chlorine dioxide that provides a large part of its potential is it is a gas that is very soluble in water. On-site generator technology allows for the production of a stock concentrate in the 2,000 to 3,000 ppm range. This stock solution is then injected into irrigation systems to a final, hose-end concentration below 1.0 ppm that results in excellent water sanitation.

Connected to this solubility characteristic is that as a gas dissolved in water, chlorine dioxide is free to diffuse or move within its solution. Due to this property, its molecules are free to move about within an irrigation line. They capitalize on this freedom of movement by penetrating biofilm layers and killing the complex right down to its attachment sites along the hard surface it has colonized. With the exception of ozone, no other sanitizing technology has the ability to diffuse this effectively.

Connecting The Dots

Once it is understood that biofilm flourishes in horticultural operations, it encourages algae and it is capable of sustaining disease organisms, including waterborne plant pathogens, we can associate value to its control. Connecting these dots along the sanitation and disease control continuum allows our industry to hone in on how to eliminate the problems and improve operational sanitation significantly. Imagine the corner of a subirrigation bench with algae and crop debris. It can be assumed that such contamination is also capable of harboring plant pathogens, particularly those that are waterborne, as well as insects such as fungus gnats and shore flies.

Greenhouse Vegetable Production

A large greenhouse tomato, pepper and cucumber operation in California (pictured at right) injects chlorine dioxide into its irrigation water and post-harvest water network to sanitize various production and post-production systems. First, constant injection to achieve a residual of 0.25 to 0.50 ppm in the irrigation water has removed pre-existing biofilm in the lines and prevents its re-establishment. A secondary benefit of this application is elimination of drip-emitter clogging resulting from organic matter deposition associated with biofilm growth and sloughing.

Algae control is another secondary benefit as the trough irrigation system is significantly cleaner with respect to algae buildup than prior to treatment. Because control is a function of continual contact between treated water and the surfaces, complete elimination of algae is dependent on the physical design of the irrigation system. Design flaws that include dead legs in irrigation runs and areas where both effective contact and regular contact time are not achieved need to be identified. These stubborn areas within an irrigation system next need to be managed with an additional effort that often involves periodic treatment with a higher dose of chemical. Such design flaws should be eliminated as irrigation systems are expanded within an operation. Once again, connecting the dots is allowing us to better understand the problems in order to solve them.

Once the tomatoes are harvested, they literally are dumped into an underground water network that floats them to the grading and packing area. Once in this area the tomatoes are transferred to a water bath containing chlorine dioxide for surface sanitation as they are cleaned, graded and packed. Tomatoes are received in a packing area via an underground water system and are raised into a chlorine dioxide solution as they float through the sanitizing and cleaning process.

Another advantage that chlorine dioxide offers with regard to vegetable and other edible crop sanitation is that because of its gaseous nature, any molecules not consumed in surface sanitation escape to the air and eliminate the need to rinse the product with water to remove any residual chemical. This avoids the issue of ensuring that rinse water, in itself, is free of microbial organisms and not re-contaminating the product. Freshly harvested produce is passed through a field-level hydro-cooler. Chilled water removes field heat, rinses soil and debris and also provides initial surface sanitizing of produce on its way to a packing shed. The water in this system is treated with chlorine dioxide.

Outdoor Nursery Production

An outdoor nursery in California recently switched to chlorine dioxide injection with a main objective of improving drip emitter performance. With year-round production and an irrigation system that captures runoff in a surface pond for reuse, clogging of drip emitters due to biofilm accumulation was a major problem. Pictured above are two drip emitters (left–new emitter; right–biofilm clogged emitter). Note the pyramidal accumulation of algae and biofilm clogging the emitter tip causing failure.

Constant inspection of drip lines and replacement of clogged emitters had grown into a full-time responsibility for one employee of this nursery. Chlorine dioxide treatment has eliminated the problem with minimal attention now being required to maintain the drip lines.

Greenhouse Ornamental Production

The ranks of greenhouse growers using, trialing and considering chlorine dioxide includes those with the following objectives:

– Elimination of biofilm from irrigation lines and holding tanks

– Elimination of drip emitter clogging

– Significant reduction of algae

– Treat irrigation water for disease control

– Treat captured runoff water for re use

Pictured above is a boom irrigation system applying chlorine dioxide treated water in a vegetative propagation greenhouse.

In the months and seasons ahead this group of growers will be the source of additional educational articles as it learns how to harness the potential of chlorine dioxide.

Leave a Reply

2 comments on “Chlorine Dioxide In Horticulture: A Technology Review

    1. Nop, my dear mike, the essentials on ClO2 is that doesn’t form molecular chlorine as hipo does, so the benefits are only with ClO2. Any doubt? send me an e-mail.

More From Equipment...
Feature Image Cob 700 (NewLux)

November 28, 2015

16 LED Lighting Solutions For Your Greenhouse

Narrowing in on the right LED lighting product often comes down to considering your specific crop needs and growing requirements to see what works best for your application. Here are 15 LED products to take into account when choosing the right fit for your greenhouse.

Read More
Begonia 'BabyWing Red' (2015 Louisiana State University Field Trials)

November 27, 2015

2015 Louisiana State University (Hammond, La.) Field Trials Results

See the 2015 field trials results (includes photo gallery) for Louisiana State University in Hammond, La.

Read More
Cape Fear Botanical Garden

November 27, 2015

National Garden Bureau Awards Grants To Three Therapeutic Gardens

The grants, totaling $10,000, are through the organization’s Growing For Futures program, which supports the growth of therapeutic gardens across the country.

Read More
Latest Stories
Feature Image Cob 700 (NewLux)

November 28, 2015

16 LED Lighting Solutions For Your Greenhouse

Narrowing in on the right LED lighting product often comes down to considering your specific crop needs and growing requirements to see what works best for your application. Here are 15 LED products to take into account when choosing the right fit for your greenhouse.

Read More

October 27, 2015

How Dallas Johnson Greenhouses Is Simplifying Shipping

Two years ago, Dallas Johnson Greenhouses, a 61-acre operation in Council Bluffs, Iowa, and No. 21 of Greenhouse Grower’s Top 100 Growers, was struggling to get its orders out. With its range of potted annuals, there were so many skus that it was impossible to get enough carts into the shipping greenhouse, and the crew couldn’t get orders processed fast enough. As a result, the operation was consistently pulling orders until midnight every night during the busy shipping season, says President and CEO Todd Johnson. So Johnson got together with Arie Van Wingerden at Cherry Creek Systems to discuss his problem, and what they came up with has changed everything, Johnson says. Inside one of Dallas Johnson Greenhouses’ existing structures, the team installed a shipping system made with Echo-Veyors, the popular cable conveyor system designed by Cherry Creek Systems. The system was placed right in the front of the greenhouse, […]

Read More
Tidal Creek Growers

October 24, 2015

Five Tips For Successful Use Of Boom Irrigation Lightin…

Michigan State University Extension shares five tips to help growers use boom irrigation lighting more effectively to accelerate flowering of long-day ornamental crops.

Read More

October 8, 2015

Industry Standards For Greenhouse Lighting On The Horiz…

As the use of LEDs has risen among greenhouse growers, so have concerns about the best way to measure and compare the many LED light products across the market. As a result, the lighting industry is responding to a call for greater transparency and the development of standardized measuring and testing methods.

Read More

September 28, 2015

11 Products For Precision Greenhouse Growing

These new options in equipment, automation, structures, lighting and software are designed to help growers run their operations with efficiency and accuracy and at a lower cost.

Read More
Laura Drotleff

September 25, 2015

Growers Solve Problems With Precision Horticulture

My dad’s hands are covered with sores, nicks, scratches and bruises. It’s the ongoing reward — or drawback — of his ingenuity, as he’s constantly wrenching on equipment or constructing new innovations that will help him get work done more efficiently on the farm. As a kid, I would always marvel at his toughness, and how he would barely notice a new wound, shrugging it off as he kept working, driven to complete his work and bring his idea to fruition. He’s still at it today, and his hands tell the story of the many projects he’s completed over the years. I’m guessing many of you can relate, and your hands look similar to my dad’s. After all, ingenuity is the name of the game in this business, where creative thinking to solve problems often leads to revolutionary solutions that automate production, save labor and cut costs. That’s easy to […]

Read More

September 24, 2015

AgriNomix Helps Keepsake Plants Cut Labor Costs With Au…

Keepsake Plants reduced labor for trimming Hydrangeas from 60 people to 28 by automating the process with AgriNomix Venti Trimmers.

Read More

September 24, 2015

4 Dramm Products That Put The Precision Into Growing

When accuracy counts, the right tool makes all the difference. New products from Dramm put tools in growers hands to get the job done efficiently.

Read More
The single cells move forward, still grouped with their pack, until the pack is positioned in front of an arm that can pick up several individual plants at a time

September 24, 2015

How Spring Meadow Nursery’s Custom Sorting Machine Kee…

The Michigan-based nursery uses automation to cut apart trays of immature plants and regroups them into new trays of similar-sized plants.

Read More
Figure 3. Sole-source lighting in a multi-layer vertical growing system utilizing hydroponics for vegetable production.

September 23, 2015

MSU Offers New Greenhouse Lighting Online Course For Gr…

  Michigan State University Extension is now offering a non-credit, pre-recorded online course on greenhouse and horticultural lighting. The lighting course is intended for greenhouse and ornamental plant growers and others interested learning about the fundamental concepts about how plants respond to light quality, quantity and in duration. It provides introductory to moderately-challenging content primarily based on experiments performed at Michigan State and Purdue Universities. This is the second course in the College of Knowledge Online series offered on the national Extension website. The first course was Floriculture Root Zone Management, also available online. What Growers Will Learn From Taking This Course The 3-hours of pre-recorded lecture and video demonstrations are divided into seven units. The first and second units cover the properties of light and its importance for plant growth and development. The third unit discusses how light quality influences stem extension and flowering. The fourth unit of the course teaches […]

Read More
ArmstrongGrowers Hanging Basket Area

September 22, 2015

Sole-Source Lighting In Horticulture: Bedding Plant Plu…

Researchers determine how sole-source LED lighting can be used effectively for the production of bedding plant seedlings.

Read More

September 18, 2015

Visser North America To Provide Mayer Potting Machines …

Visser North America (NA) will now be the official North American supplier for sales, service and parts provider of Mayer potting machines and equipment. The Mayer premium line of potting machines is the latest addition to the Visser NA lineup, including the NewLux, Logitec Plus and Visser product lines. “Much like our current product lines, Mayer is a leading provider of potting machines and further horticultural equipment worldwide and its brand represents quality in our industry,” says Kevin Vander Ploeg, president of Visser NA. “We believe in providing our customers with the best solution for their operation with ongoing support and service excellence. Naturally, we are pleased to add Mayer to our product line up.” Mayer, a German company manufacturing in Europe and with a global presence, has been designing and manufacturing potting machines since 1967. The Mayer product range includes solutions for the entire process chain from soil preparation to filling of pots/trays […]

Read More
Costa Farms’ new solar panels will offset 493,487 pounds of carbon dioxide annually

September 15, 2015

Costa Farms Ramps Up Sustainability Efforts With Solar …

Costa Farms is seeking to make sustainability a top priority at its headquarters and two other buildings in Miami with the recent construction of new solar panels, which will replace 25 percent of the company's power usage with solar energy.

Read More
Trays move on an overhead conveyor to the end of the production line, where workers carefully pack the cleaned, sized, graded, counted and sorted Calla tubers

September 14, 2015

Golden State Bulb Growers Increases Efficiency With New…

Necessity is the mother of invention, and that’s certainly true for Golden State Bulb Growers. The Moss Landing, Calif., operation, which supplies its Callafornia Calla Lily bulbs to wholesale markets around the world, was in need of a more streamlined and less labor-intensive solution to grade and sort bulbs. So Golden State’s management team got creative and started talking with MAF Industries, part of the MAF-RODA Group that specializes in the design and manufacture of grading, packing, palletizing and handling fresh fruit and vegetable systems. The manufacturer was willing to work with Golden State on the Calla Lily bulb grading and sorting machine design process. This resulted in Golden State Bulb Growers investing $700,000 to purchase the new grading system to better serve the needs of its customers, increasing uniformity and productivity in its Callafornia Callas bulb processing. Investing in the new system has also allowed Golden State Bulb Growers […]

Read More
Figure 1. Mustard microgreens grown under sole-source (SS) lighting using light-emitting diode (LED) arrays.

August 21, 2015

Sole-Source LED Lighting In Horticulture: Microgreens P…

In Part 3 of a four-part lighting series highlighting the multiple uses of light-emitting diodes (LEDs), researchers examine the effects of sole-source LED lighting on microgreen production to achieve the highest quality crop possible in an energy efficient manner.

Read More
Lighting 2015 August Feature Image

August 14, 2015

Customizing Crop Foliage Color With LEDs: Ornamental Cr…

Do you find that your purple fountain grass (Pennisetum setaceum ‘Rubrum’) crop is often green to light purple? What if we told you there is a quick solution to enhance and darken the foliage of purple fountain grass or other floriculture crops? In this second article of a four-part series highlighting the multiple uses of high-intensity light-emitting diodes (LEDs), we will discuss our research methodology and findings for enhancing the foliage color of ornamental crops with end-of-production (EOP) supplemental lighting (SL) in the greenhouse. Many ornamental crops that greenhouse and nursery growers produce vary in size, shape and color. These variables are often influenced by the growing environment. For example, leaf color (intensity, distribution or both) of ornamental crops such as purple fountain grass is a key component that often influences the consumer’s perception and ultimately an impulse purchase. The red or purple pigmentation of purple fountain grass leaves is […]

Read More
WaterPulse retail mats can help cut water use in retail settings

August 10, 2015

Technology Provides Solutions For Growing In Drought

In April, California Gov. Jerry Brown directed the State Water Resources Control Board to institute reductions in cities and towns across the state with the goal of reducing water usage by 25 percent. The announcement comes following the lowest snowpack ever recorded in the High Sierra. It was the first time in state history that action was taken to implement mandatory water restrictions. In May, the farmers in California’s Sacramento-San Joaquin River Delta agreed to reduce their water use by 25 percent in exchange for assurance that they will not face further curtailment during the June to September growing season. Their proposal was approved by the State Water Resources Control Board. Growers who participate in the program could opt to either reduce water diversions under their riparian rights by 25 percent, or fallow 25 percent of their land. Given these conditions, growers and retailers are in need of methods and […]

Read More
Heating Roundup Feature Image

August 1, 2015

5 New Heating Options For The Greenhouse

Five heating systems manufacturers share their latest and greatest products. Tubing And Aluminum Heat Pipes (BioTherm) From Megatube and MicroClimate tubing to DuoFin and StarFin aluminum heat pipe, BioTherm is dedicated to providing heat solutions that can withstand the toughest greenhouse environments. The MegaTube and MicroClimate tubing options are easy to install and ideal for bench or floor heating. The tubing has a conductive heating surface that allows for maximum root-zone heating. The DuoFin and StarFin aluminum pipe options are great for perimeter heating and melting snow trapped in the greenhouse gutter. It can also be useful for bench heating. Both pipe options provide gentle, radiant heat for plants and don’t require welding. Infinite Energy 2 Condensing Boiler (Delta T Solutions) With up to 98 percent efficiency, the IE2 condensing boiler boasts a stainless steel heat exchanger with larger waterways to ensure maximum heat transfer. The product’s design ensures flexibility while […]

Read More
[gravityform id="35" title="false" description="false"]