Produce High-Quality Rooted Cuttings

Fig. 1. Propagation bench with no shade cloth or shade cloth providing 31 percent, 68 percent or 86 percent shade. Supplemental light from high-pressure sodium lamps are used to create four different daily light integrals during root development.

Whether you are a propagation specialist or are rooting cuttings for your own in-house production, the goals of propagators are the same — to efficiently produce high-quality rooted cuttings. In order to meet the spring and early summer market dates for flowering bedding plants, cuttings are typically rooted in mid- to late-winter and early spring when the outdoor daily light integrals (DLIs) are at seasonally low levels. The DLI inside a greenhouse is often further reduced as a result of glazing material and interior structures, as well as hanging baskets suspended above benches to maximize production space.

Research has recently shed some light on the impact of light levels during propagation of New Guinea impatiens and petunias. However, the number of species and cultivars grown from cuttings is quite large and diverse. Therefore, we wanted to better understand the impact of DLI during propagation on growth and quality of several vegetatively propagated annual bedding plant species.

How the Study Was Conducted

Cuttings of Angelonia ‘AngelFace White,’ Argyranthemum ‘Madeira Cherry Red,’ Sutera ‘Abunda Giant White (bacopa),’ Diascia ‘Wink Coral,’ Lantana ‘Lucky Gold,’ Nemesia ‘Aromatica Royal,’ Osteospermum ‘Voltage Yellow,’ Scaevola ‘Blue Print’ and Verbena ‘Aztec Violet’ were stuck in 105-cell trays filled with a propagation substrate that was 50-percent soilless substrate and 50-percent coarse perlite. Cuttings were maintained in a propagation greenhouse with an air and substrate temperature set point of 73°F. During the first seven days of callusing, the average DLI was maintained at about 5 mol•m¯²•d¯¹.

After seven days, cuttings were placed in a greenhouse with high-pressure sodium lamps operating for 16 hours per day with either no shade cloth or shade cloth providing 31 percent, 68 percent or 86 percent shade (Fig. 1). We repeated the experiment two additional times to achieve a span of DLIs representing a range of greenhouse DLIs, from 1.2 (very low) to 12.3 mol•m¯²•d¯¹ (moderately high). Two weeks after being placed under the shade/lighting treatments, rooted cuttings were harvested. We measured stem length and caliper and washed the substrate off the roots so we could separate roots and shoots to record dry weights.

Supplemental Lighting Increased Both Shoot And Root Growth

Shoot dry weight (a measure of plant size) increased for all species as DLI increased during propagation, though species also varied in the magnitude of their response (Figs. 2 and 3). As DLI increased from 1.2 to 12.3 mol•m¯²•d¯¹, shoot dry weight of all species increased, from 50 percent (lantana) to 384 percent (diascia).

More importantly for cutting propagators, increasing DLI increased the root dry weight for all nine species. For example, increasing the DLI by 11 mol•m¯²•d¯¹ resulted in a 156 percent increase in root dry weight of verbena, while root dry weight of diascia increased by 1,137 percent. Additionally, the root:shoot dry weight ratio increased for all species as DLI during propagation increased. While the root:shoot ratio of verbena increased by 18 percent as DLI during propagation increased, the root:shoot ratio of osteospermum and scaevola increased by 329 percent and 419 percent, respectively. This means that although both shoot and root growth increased with DLI, cuttings allocated more growth into roots as opposed to shoots.

Increased DLI Has Variable Effect On Stem Length

While shoot and root growth increased with DLI for all species, there was no consistent trend in stem length in response to DLI during propagation. For example, as DLI during propagation increased from 1.2 to 12.3 mol•m¯²•d¯¹, the stem length of lantana and nemesia both increased by 20 percent while stem length of diascia increased by 76 percent.

Alternatively, stem length of argyranthemum, osteospermum and scaevola was unaffected by DLI during propagation. Similarly, stem caliper of bacopa, lantana and scaevola were unaffected by DLI, while stem caliper of angelonia, argyranthemum, diascia, nemesia, osteospermum and verbena increased with DLI during propagation by 11 percent (verbena) to 119 percent (diascia).

Measuring The Impact On Plant Quality

We often talk about plant quality, and several attributes contribute to our perception of this. It is generally desirable to have rooted cuttings and plugs with good root and shoot growth, a higher root:shoot ratio. They should be sturdy and not too leggy. Though we collected all of this data for cuttings, we wanted to integrate it to assess overall quality.

To do this, we used something we called the “quality index” (Fig. 4), a
value derived from an equation combining the total mass, root:shoot ratio and the ratio of stem caliper to stem length. The quality index increased differently for all species as DLI during propagation increased from 1.2 to 12.3 mol•m¯²•d¯¹, from 53 percent (lantana) to 960 percent (diascia).

Supplemental Lighting May Save Money  

In addition to producing high-quality rooted cuttings, lighting during propagation may actually save you money by reducing overall production time for rooted cuttings. How can adding supplemental light reduce energy costs? Let’s look at a few examples using Virtual Grower, a tool developed by the USDA-ARS to estimate energy consumption during greenhouse production. We will start by simulating propagation of angelonia in a 1-acre glass-glazed greenhouse in Indianapolis, Ind., in March.

Assuming an average greenhouse DLI of ~5 mol•m¯²•d¯¹, production will take about five weeks. Our day and night temperature set points will be 73°F and 70°F, respectively, for the first four weeks (callusing and rooting), followed by one week of 73°F days and 65°F nights (toning). It would cost approximately $1.02/ft² for the five-week period to finish angelonia cuttings if you are heating with propane. Now, if we provide 75 µmol•m¯²•d¯¹ (577 foot-candles) for 18 hours using 400-W HPS lamps this will provide ~5 mol•m¯²•d¯¹, bringing our total DLI up to approximately 10 mol•m¯²•d¯¹ during root development and toning.

The energy costs for operating the HPS lamps would be $0.03/ft²for the three-week lighting period. However, our heating costs are reduced, because under the higher DLI the cuttings finish one week earlier. Therefore, when the total energy cost for producing rooted angelonia cuttings with supplemental light ($0.86/ft²) is compared to no supplemental light ($1.02/ft²), we can realize a 15 percent savings.

Let’s look at another example using a species that has a stronger response to DLI during propagation  — argyranthemum. Using the same production facility and temperatures already described, we would have the same energy cost for heating during the five weeks of production — $1.02/ft². When we add the same supplemental light after a week of callusing, our cuttings would be finished in a total of three weeks. Our total energy costs for two weeks of supplemental lighting and three weeks of heating would be $0.77/ft², resulting in a 25 percent reduction in energy costs compared to argyranthemum cuttings rooted without supplemental light.

When interpreting these costs, it is important to know that energy costs will vary with greenhouse structures and glazing material, location and time of year. However, we think these examples are useful in seeing how lighting during propagation may affect your production costs.

Consider Whether Supplemental Lighting Will Work For You    
If you are currently rooting cuttings and looking for ways to improve both the quality of your liners and your efficiency in production, we encourage you to evaluate using supplemental light during propagation. A good starting point would be to begin monitoring the DLI in your propagation area to see how much light you are receiving during propagation.     GG

Leave a Reply

One comment on “Produce High-Quality Rooted Cuttings

  1. Buenas tardes, quiero agradecerles por poner a nuestra disposición este aclarador estudio y quisiera saber si han probado ustedes con esquejes de crisantemo y si es necesario dar luz suplementaria en las noches a el esqueje antes de que forme sus primeras raices. Muchas gracias Saul Correa

More From Technology...
Lowpad-feature

April 12, 2018

New Automatic Guided Vehicle Helps Move Product Around the Greenhouse

The Lowpad is less than 5 inches tall and is designed to navigate the greenhouse floor safely and freely.

Read More
Greenhouse-retrofit-with-Reglazing-2

April 10, 2018

How to Decide Whether to Build a New Greenhouse Structure or Retrofit an Existing One

Is it time for you to update your greenhouse structure? Follow this tips from L.L. Klink to help you decide whether it’s better to retrofit an existing structure or build a new one.

Read More
Battlefield-Farms-Vertical-Farming-feature

April 9, 2018

A Look Beyond the Hype of Vertical Farming

Big money and sexy technology may be hallmarks of this rapidly growing industry, but it still has some lessons to learn before it can feed the world.

Read More
Latest Stories
Lowpad-feature

April 12, 2018

New Automatic Guided Vehicle Helps Move Product Around …

The Lowpad is less than 5 inches tall and is designed to navigate the greenhouse floor safely and freely.

Read More
Greenhouse-retrofit-with-Reglazing-2

April 10, 2018

How to Decide Whether to Build a New Greenhouse Structu…

Is it time for you to update your greenhouse structure? Follow this tips from L.L. Klink to help you decide whether it’s better to retrofit an existing structure or build a new one.

Read More
Battlefield-Farms-Vertical-Farming-feature

April 9, 2018

A Look Beyond the Hype of Vertical Farming

Big money and sexy technology may be hallmarks of this rapidly growing industry, but it still has some lessons to learn before it can feed the world.

Read More

April 5, 2018

Building Custom Solutions With L.L. Klink

Through its vertically integrated family of businesses and collaboration with greenhouse manufacturers and equipment suppliers, L.L. Klink Greenhouse Solutions works with growers and institutions to design, build, maintain, and furnish greenhouse structures.

Read More
Rob-Lando-feature

April 4, 2018

Meet Greenhouse Grower Technology’s New Advisory …

Technology experts including growers, researchers, and industry suppliers will serve as a guiding voice on the big trends shaping innovation in the greenhouse.

Read More
Texas-Tech-University-Guo_Drone

April 3, 2018

The Top Schools for Precision Ag Education

Technology is a key area of focus for young greenhouse industry members. Check out some of the top universities where they are honing their skills, and where the next generation can turn.

Read More
GrowSpan-Series-500-Tall-Greenhouse-GrowSpan-feature

March 30, 2018

The Latest in Structures: New Greenhouse Systems Offer …

Structures manufacturers and suppliers say their grower customers are asking for new models that can accommodate a diverse crop mix, while providing flexibility in design, maintenance, and control of the environment. Here’s a closer look at some of the latest options.

Read More
Iwasaki-Brothers-LED-Lighting-feature

March 25, 2018

How You Can Run Your Business More Efficiently with LED…

The energy-savings potential of LED lighting systems can lead to a quick investment return.

Read More
Greenbelt-Microgreens-Heliospectra-HelioCORE-feature

March 23, 2018

New Light Management System Aims for Consistent Plant P…

The HelioCORE light control software system is designed to help growers automatically manage supplemental lighting and adjust schedules and intensity in real time.

Read More
Illumitex-NeoPAR-7-bar-feature

March 21, 2018

New Lighting Series is Adaptable to Several Environment…

The NeoPAR series from Illumitex is designed to foster photosynthesis in all stages of plant development.

Read More
Dramm TracFOG Nozzle Extension

March 14, 2018

Dramm Offering New Video Chat Option for Service Issues…

The Dramm Corporation recently introduced two new resources for its greenhouse grower customers to deal with indoor growing conditions.

Read More
Ever Bloom Robot Sprayer

March 5, 2018

Technology Will Change the Face of Horticulture Within …

Every once in a while, I’ll see a grower post a video on social media, showing off some new transplanter, harvesting robot, or another kind of automation equipment and explaining what it is and how it’s making a difference in the growing operation. Inevitably, these videos get tons of clicks, likes, and comments. Most are from people outside the industry who say something like, “Wow, that’s really cool!” or “I had no idea greenhouses were so high-tech!” But then there are the folks who make comments about the automation taking away greenhouse jobs. The grower who posted the video typically responds, explaining that the automation actually doesn’t displace any workers — they’re just reassigned to higher value functions — and that reliable employees are extremely difficult to find in our industry, thus the need for automation. The reality is, due to our current labor struggles, it’s likely our industry will […]

Read More
Harvest-Automation-Robot-at-Green-Circle-Growers-feature

February 28, 2018

How to Make Plants Better With Automation

Automation does more than help with labor problems. Other tangible benefits also make automating the greenhouse worth the effort and cost.

Read More
Lighting-Heating-Fans-Inspection

February 26, 2018

The Benefits of a Greenhouse Maintenance Plan and Check…

A greenhouse maintenance plan and checklist can reduce equipment failures, improve equipment efficiency, and boost long-term profits.

Read More
Visser PC 16 Transplanter feature

February 26, 2018

20 Technology Trends Driving the Greenhouse Industry in…

From automation to artificial intelligence, check out this video for a closer look at how greenhouse growers are investing in technology in 2018.

Read More
Gotham Greens Atrium Style Greenhouse Chicago

February 17, 2018

Gotham Greens Building Second Greenhouse in Suburban Ch…

The new $12.5 million, 105,000-square-foot greenhouse will be near the company’s first Chicago greenhouse, and will be a free-standing structure.

Read More
Water-Sensor-for-pH-in-cannabis-greenhouse

February 5, 2018

Tips for Using a Greenhouse Monitoring System to Protec…

Properly selecting and installing a remote monitoring system can help cannabis growers identify trends in environmental conditions to make sure they aren’t fluctuating, which could indicate a possible equipment problem.

Read More
Labeled-Trays-from-ISO-Line

February 4, 2018

Automation Turns to Data at Four Star Greenhouse

When Four Star Greenhouse needed its ISO machines to do more than stick cuttings, three businesses came together to come up with an innovative solution.

Read More