Reduce Flowering Time

Fig. 1. Nemesia ‘Aromatica Royal’ and Osteospermum ‘Voltage Yellow’ finished in a common greenhouse with a daily light integral of approximately 12 mol•m¯²•d¯¹  from cuttings propagated under 2.0 to 12.3 mol•m¯²•d¯¹  during rooting. The photo is taken two weeks after transplanting.

This is the second article in a two-part series looking at the effects of light during cutting propagation. While the first article focused on the effects of daily light integral (DLI) during propagation of rooted cuttings, this article will focus on finished plants. We wanted to see how DLI during propagation affected growth and flowering after transplant, as well as identify how the DLI during propagation interacted with the DLI during finishing to influence crop timing and quality.

Study 1: Lighting During Propagation

Cuttings of Angelonia ‘AngelFace White,’ Nemesia ‘Aromatica Royal,’ Osteospermum ‘Voltage Yellow,’ and Verbena ‘Aztec Violet’ were stuck in 105-cell trays and placed in a propagation greenhouse with an air and substrate temperature set point of 73°F and the average DLI was maintained at about 5 mol•m¯²•d¯¹. After seven days, cuttings were placed under a range of DLIs, from 1.2 to 12.3 mol•m¯²•d¯¹, achieved using supplemental light from high-pressure sodium (HPS) lamps and no shade or shade cloth providing 31 percent, 68 percent or 86 percent shade.
In order to identify any residual effects of propagation DLI on subsequent growth and development during finishing, cuttings from the various propagation DLI treatments were transplanted and grown in a common environment.

Two weeks after cuttings were placed under the propagation DLI treatments, cuttings were transplanted into 4.5-inch containers filled with a commercial soilless substrate. Plants were grown in a greenhouse with an air temperature set point of 70ºF and an average DLI of about 12 mol•m¯²•d¯¹ and fertilized with 200 ppm N from a balanced fertilizer at each watering. When the first flower opened on a plant, we collected data including time to flower from transplant, flower bud and branch number, plant height and shoot dry weight.

Study 2: Lighting During Propagation And Finish

In a separate study, cuttings of Angelonia ‘AngelMist White Cloud,’ Nemesia ‘Aromatica Royal,’ Osteospermum ‘Voltage Yellow,’ and Verbena ‘Aztec Violet’ were stuck in 105-cell trays and placed in a propagation greenhouse with an air and substrate temperature set point of 73°F and the average DLI was maintained at about 5 mol•m¯²•d¯¹.  After seven days of callusing, cuttings of each species were placed under one of three propagation DLIs, achieved as previously described using different shade cloths and supplemental lighting.

After two weeks under the DLI treatments, cuttings from each propagation DLI were transplanted and placed in a greenhouse under one of three DLI treatments for finishing. The different finishing DLIs were achieved similar to those in the propagation environment — with the use of no shade cloth or varying levels of shade cloth and supplemental light from high-pressure sodium (HPS) lamps. This resulted in nine unique combinations of propagation and finishing DLI treatments. As with the cuttings study, when the first flower opened on a plant, we collected data including time to flower from transplant, flower bud and branch number, plant height and shoot dry weight.

Summary Of Results:Lighting During Propagation Study

The number of days from transplant to flowering decreased as propagation DLI increased for all four species in this study (Fig. 1). For example, time to flower was reduced by 23 and 19 days for angelonia and osteospermum, respectively, as DLI during propagation increased from 1.2 to 12.3 mol•m¯²•d¯¹. Neither the number of nodes below the first open flower nor flower buds for angelonia, nemesia and verbena were influenced by propagation, indicating that flowers had initiated before propagation began. With the development of cultivars that are less photoperiodic, controlling the flowering of free-flowering cultivars is a new challenge growers are facing.

The DLI during propagation also affected shoot growth, plant height or stem length, and the number of branches at flowering. Shoot dry weight of all species decreased as propagation DLI increased. Similarly, the number of branches for several species decreased with higher DLIs during propagation. As DLI during propagation increased from 1.2 to 12.3 mol•m¯²•d¯¹, plant height of angelonia and osteospermum at flowering decreased by 2.5 and 1.5 inches, respectively, while stem length of verbena was an exception to this trend and was unaffected by DLI. For cuttings propagated under higher DLIs, the reduction in shoot dry weight and branching at flowering may be related to the faster flowering. When plants flower more quickly, there is less time to “bulk up” shoot growth and allow branches to develop.

Summary of Results: Lighting During Propagation And Finish Study

Similar to our first study, the time to flowering for all species decreased as propagation and finishing DLIs increased (Figs. 2 and 3). For example, as propagation DLI increased from 1.5 to 16.8 mol•m¯²•d¯¹ and finishing DLI increased from 4.6 to 17.5 mol•m¯²•d¯¹, the time to flower after transplant for angelonia, nemesia, osteospermum and verbena decreased by 26, 46, 25 and 26 days, respectively. Similarly, both propagation and finishing DLIs influenced flower bud number. The number of flower buds of angelonia, nemesia, osteospermum and verbena increased as both propagation and finishing DLI increased. Generally, though DLIs during both stages influenced the time to flowering and flower bud number, propagation DLI appeared to have a greater influence on time to flower while the finishing DLI had a greater influence on flower bud number.

The DLI during propagation also interacted with finishing DLI to affect the growth of angelonia, nemesia, osteospermum and verbena. While shoot dry mass at flowering for species decreased with propagation DLI, shoot mass increased with finishing DLI. However, the finishing DLI resulted in a greater increase in shoot mass for cuttings propagated under lower DLIs compared to cuttings propagated under higher DLIs. Again, this relationship between shoot mass and propagation and finishing DLIs is most likely related to the time to flower.

Height was influenced differently by propagation and finishing DLI among species. For example, the height of nemesia decreased by nearly 60 percent as both propagation and finishing DLIs increased from 2.0 to 16.8 mol•m¯²•d¯¹ and 2.0 to 17.5 mol•m¯²•d¯¹, respectively. Alternatively, height of angelonia and osteospermum were relatively unaffected by propagation and finishing DLI.

The influence of propagation DLI and finish DLI on branch number varied among species. For example, angelonia propagated and finished under low DLIs averaged no branches, while plants propagated and finished under higher DLIs had 4 branches. While both propagation and finishing DLI influenced branch number, the DLI during finishing had a stronger impact.

Economics Of Supplemental Lighting

Lighting during propagation may save you money by reducing the finishing time for plants and, as in our previous article, we will use Virtual Grower to demonstrate this. Angelonia cuttings propagated under 5 mol•m¯²•d¯¹ will finish in 32 days, while angelonia propagated under 10 mol•m¯²•d¯¹ will finish nine days earlier. The energy costs during finishing for angelonia  in a 1-acre glass-glazed greenhouse with a 70°F air temperature in Indianapolis, Ind., in March would be $0.58/ft² and $0.42/ft² for cuttings propagated under 5 and 10 mol•m¯²•d¯¹, respectively. Therefore, lighting during propagation could potentially reduce finishing energy costs by 27 percent.

In addition to potential energy savings, let’s take a look at the efficiency of lighting during propagation versus finishing. For a 105-cell tray, there are about 76 cuttings per ft², whereas a square foot of 4-inch pots may have from four plants per ft² (spaced on 6-inch centers) to nine plants per ft² (spaced pot-to-pot). Therefore, a square foot of illuminated bench space in propagation can have from 844 to 1,900 percent more plants under light compared to during finishing! Furthermore, propagation areas are generally a fraction of the total production area for growers who propagate in-house, meaning a lower initial investment to light your propagation area.

The Take-Home Message

Our studies show that DLI during propagation and finishing of bedding plants clearly impacts the growth, timing and quality of finished annuals. However, our studies also demonstrate that DLI during propagation and finishing affect finished plants differently. For example, propagation DLI appears to have a stronger effect on the time to flower, while finishing DLI has a stronger effect on flower bud number and shoot dry weight.

When the energy savings during finishing and of lighting propagation space are taken together, using supplemental light may be considered a “low-hanging fruit” when looking at ways to reduce crop time and increase finished plant quality. Growers will need to evaluate their goals and priorities when making management decisions related to investing in supplemental lighting.

Leave a Reply

More From Technology...
mcconkey-plastic-shelves-feature

December 1, 2016

How Color Point Is Stopping Cart Theft With Plastic Shelves

Plastic shelving on carts acts as a deterrent to theft, and employees enjoy the benefits of being able to handle the racks without difficulty or injuries.

Read More
oasis-water-valve-feature

November 30, 2016

How You Can Water Plants Based On Basket Weight

The Oasis from Control Dekk is designed to reduce water use by giving baskets the exact amount of water they need.

Read More
Silver Bullet Heaters (Heat Star By Enerco) Feature

November 28, 2016

The Latest In Greenhouse Heating And Cooling Products

New developments in heating, cooling, ventilation, and humidity control technology are designed to help you manage your greenhouse environment more efficiently. Check out some of the latest offerings from leading manufacturers.

Read More
Latest Stories
mcconkey-plastic-shelves-feature

December 1, 2016

How Color Point Is Stopping Cart Theft With Plastic She…

Plastic shelving on carts acts as a deterrent to theft, and employees enjoy the benefits of being able to handle the racks without difficulty or injuries.

Read More
oasis-water-valve-feature

November 30, 2016

How You Can Water Plants Based On Basket Weight

The Oasis from Control Dekk is designed to reduce water use by giving baskets the exact amount of water they need.

Read More
Silver Bullet Heaters (Heat Star By Enerco) Feature

November 28, 2016

The Latest In Greenhouse Heating And Cooling Products

New developments in heating, cooling, ventilation, and humidity control technology are designed to help you manage your greenhouse environment more efficiently. Check out some of the latest offerings from leading manufacturers.

Read More
north-creek-nurseries-gutter-connected-greenhouse-feature

November 23, 2016

How Greenhouse Technology At North Creek Nurseries Expe…

The new structure is the latest step in a lean flow efficiency process designed to help the company cut waste, drive down shrink, and increase profits.

Read More
Sensaphone alarms system

November 21, 2016

Five Things To Consider Before Purchasing A Greenhouse …

A greenhouse alarm can be the difference between you and a major catastrophe that results in crop losses. Before you make a purchase, take these factors into account.

Read More
bell-nursery nc-planting-lines

November 15, 2016

Thoughts For Greenhouse Growers To Consider When Automa…

With labor getting scarce and minimum wages on the rise, Cole Mangum of Bell Nursery says it’s time to take a closer look at automating your operation.

Read More
LED lights used in greenhouse

November 4, 2016

Evaluating Greenhouse Supplemental Lighting For Young A…

Researchers at Purdue and Michigan State University compare young and finished plant production under LED toplighting and HPS lamps to determine which source is most effective.

Read More
light-deprivation-system

October 27, 2016

5 Things Cannabis Growers Should Look For In A Light De…

From automation to installation, here are five things you need to know when adding a light deprivation system to your cannabis greenhouse.

Read More
cannabis-under-led-lighting

October 24, 2016

Study Shows Effectiveness Of Growing Cannabis Under LED…

The study, conducted by the Wageningen University & Research Centre in The Netherlands, shows some varieties of cannabis plants grown under LED lighting may produce more medicinally active substances than if they had been grown under other intensive lighting systems.

Read More
greenpower-led-production-module-philips-lighting

October 18, 2016

Lighting Research Center Is Surveying Growers On Supple…

The Center, part of the Rensselaer Polytechnic Institute, is looking for commercial growers to participate in an online survey regarding supplemental greenhouse lighting.

Read More
ag-robotics-forum

October 17, 2016

International Forum Of Agricultural Robotics Will Highl…

The inaugural event, organized by two France-based companies, is designed to bring together ag robotics stakeholders to discuss, debate, and exchange ideas on the future of agriculture.

Read More
Dual Atrium Greenhouse (Nexus)

October 12, 2016

Gibraltar Industries Acquires Nexus Corporation

The building manufacturer and distributor strengthens its position in the U.S. greenhouse market, complementing its RBI greenhouse company with the aquisition of Nexus Corp.

Read More
Chemical hopper

October 3, 2016

New Soil Mix Technology Generates High-Precision Greenh…

Advancements in soil mixers help growers achieve the highest level of automation and efficiency to create the ideal growing media for every type of crop.

Read More
nc-state-solar-cell-greenhouse

October 3, 2016

North Carolina Researchers Studying Solar Cells For Gre…

Researchers from North Carolina State University and University of North Carolina-Chapel Hill are launching a project to develop next-generation greenhouses with built-in solar cells that make use of the entire spectrum of solar light.

Read More
hoffman-new-greenhouse-feature

September 30, 2016

How Hoffman Nursery Invests In Technology In Response T…

The North Carolina-based ornamental and native grasses producer recently invested in greenhouse structures and advanced automation to help increase efficiency.

Read More
totalgrow-night-and-day-management-boom-lighting-venntis-feature

September 27, 2016

Check Out The Latest In Lighting Technology For Greenho…

Manufacturers are developing several innovative lighting systems that can help growers save on energy efficiency, while improving plant quality. Here’s a look at some of their newest offerings.

Read More
sbi-software-triumph

September 25, 2016

Greenhouse Software Suppliers Offering A Range Of New S…

Want to know what some of the leading software suppliers are doing to address the ever-evolving needs of their greenhouse customers? Here’s a brief update.

Read More
cannabis-lighting

September 24, 2016

4 Tips On Picking The Best Lighting System For Cannabis…

From energy use to maintenance, here are some suggestions from one expert on how to ID the best lighting system for your greenhouse.

Read More
[gravityform id="35" title="false" description="false"]