Reduce Flowering Time

Fig. 1. Nemesia ‘Aromatica Royal’ and Osteospermum ‘Voltage Yellow’ finished in a common greenhouse with a daily light integral of approximately 12 mol•m¯²•d¯¹  from cuttings propagated under 2.0 to 12.3 mol•m¯²•d¯¹  during rooting. The photo is taken two weeks after transplanting.

This is the second article in a two-part series looking at the effects of light during cutting propagation. While the first article focused on the effects of daily light integral (DLI) during propagation of rooted cuttings, this article will focus on finished plants. We wanted to see how DLI during propagation affected growth and flowering after transplant, as well as identify how the DLI during propagation interacted with the DLI during finishing to influence crop timing and quality.

Study 1: Lighting During Propagation

Cuttings of Angelonia ‘AngelFace White,’ Nemesia ‘Aromatica Royal,’ Osteospermum ‘Voltage Yellow,’ and Verbena ‘Aztec Violet’ were stuck in 105-cell trays and placed in a propagation greenhouse with an air and substrate temperature set point of 73°F and the average DLI was maintained at about 5 mol•m¯²•d¯¹. After seven days, cuttings were placed under a range of DLIs, from 1.2 to 12.3 mol•m¯²•d¯¹, achieved using supplemental light from high-pressure sodium (HPS) lamps and no shade or shade cloth providing 31 percent, 68 percent or 86 percent shade.
In order to identify any residual effects of propagation DLI on subsequent growth and development during finishing, cuttings from the various propagation DLI treatments were transplanted and grown in a common environment.

Two weeks after cuttings were placed under the propagation DLI treatments, cuttings were transplanted into 4.5-inch containers filled with a commercial soilless substrate. Plants were grown in a greenhouse with an air temperature set point of 70ºF and an average DLI of about 12 mol•m¯²•d¯¹ and fertilized with 200 ppm N from a balanced fertilizer at each watering. When the first flower opened on a plant, we collected data including time to flower from transplant, flower bud and branch number, plant height and shoot dry weight.

Study 2: Lighting During Propagation And Finish

In a separate study, cuttings of Angelonia ‘AngelMist White Cloud,’ Nemesia ‘Aromatica Royal,’ Osteospermum ‘Voltage Yellow,’ and Verbena ‘Aztec Violet’ were stuck in 105-cell trays and placed in a propagation greenhouse with an air and substrate temperature set point of 73°F and the average DLI was maintained at about 5 mol•m¯²•d¯¹.  After seven days of callusing, cuttings of each species were placed under one of three propagation DLIs, achieved as previously described using different shade cloths and supplemental lighting.

After two weeks under the DLI treatments, cuttings from each propagation DLI were transplanted and placed in a greenhouse under one of three DLI treatments for finishing. The different finishing DLIs were achieved similar to those in the propagation environment — with the use of no shade cloth or varying levels of shade cloth and supplemental light from high-pressure sodium (HPS) lamps. This resulted in nine unique combinations of propagation and finishing DLI treatments. As with the cuttings study, when the first flower opened on a plant, we collected data including time to flower from transplant, flower bud and branch number, plant height and shoot dry weight.

Summary Of Results:Lighting During Propagation Study

The number of days from transplant to flowering decreased as propagation DLI increased for all four species in this study (Fig. 1). For example, time to flower was reduced by 23 and 19 days for angelonia and osteospermum, respectively, as DLI during propagation increased from 1.2 to 12.3 mol•m¯²•d¯¹. Neither the number of nodes below the first open flower nor flower buds for angelonia, nemesia and verbena were influenced by propagation, indicating that flowers had initiated before propagation began. With the development of cultivars that are less photoperiodic, controlling the flowering of free-flowering cultivars is a new challenge growers are facing.

The DLI during propagation also affected shoot growth, plant height or stem length, and the number of branches at flowering. Shoot dry weight of all species decreased as propagation DLI increased. Similarly, the number of branches for several species decreased with higher DLIs during propagation. As DLI during propagation increased from 1.2 to 12.3 mol•m¯²•d¯¹, plant height of angelonia and osteospermum at flowering decreased by 2.5 and 1.5 inches, respectively, while stem length of verbena was an exception to this trend and was unaffected by DLI. For cuttings propagated under higher DLIs, the reduction in shoot dry weight and branching at flowering may be related to the faster flowering. When plants flower more quickly, there is less time to “bulk up” shoot growth and allow branches to develop.

Summary of Results: Lighting During Propagation And Finish Study

Similar to our first study, the time to flowering for all species decreased as propagation and finishing DLIs increased (Figs. 2 and 3). For example, as propagation DLI increased from 1.5 to 16.8 mol•m¯²•d¯¹ and finishing DLI increased from 4.6 to 17.5 mol•m¯²•d¯¹, the time to flower after transplant for angelonia, nemesia, osteospermum and verbena decreased by 26, 46, 25 and 26 days, respectively. Similarly, both propagation and finishing DLIs influenced flower bud number. The number of flower buds of angelonia, nemesia, osteospermum and verbena increased as both propagation and finishing DLI increased. Generally, though DLIs during both stages influenced the time to flowering and flower bud number, propagation DLI appeared to have a greater influence on time to flower while the finishing DLI had a greater influence on flower bud number.

The DLI during propagation also interacted with finishing DLI to affect the growth of angelonia, nemesia, osteospermum and verbena. While shoot dry mass at flowering for species decreased with propagation DLI, shoot mass increased with finishing DLI. However, the finishing DLI resulted in a greater increase in shoot mass for cuttings propagated under lower DLIs compared to cuttings propagated under higher DLIs. Again, this relationship between shoot mass and propagation and finishing DLIs is most likely related to the time to flower.

Height was influenced differently by propagation and finishing DLI among species. For example, the height of nemesia decreased by nearly 60 percent as both propagation and finishing DLIs increased from 2.0 to 16.8 mol•m¯²•d¯¹ and 2.0 to 17.5 mol•m¯²•d¯¹, respectively. Alternatively, height of angelonia and osteospermum were relatively unaffected by propagation and finishing DLI.

The influence of propagation DLI and finish DLI on branch number varied among species. For example, angelonia propagated and finished under low DLIs averaged no branches, while plants propagated and finished under higher DLIs had 4 branches. While both propagation and finishing DLI influenced branch number, the DLI during finishing had a stronger impact.

Economics Of Supplemental Lighting

Lighting during propagation may save you money by reducing the finishing time for plants and, as in our previous article, we will use Virtual Grower to demonstrate this. Angelonia cuttings propagated under 5 mol•m¯²•d¯¹ will finish in 32 days, while angelonia propagated under 10 mol•m¯²•d¯¹ will finish nine days earlier. The energy costs during finishing for angelonia  in a 1-acre glass-glazed greenhouse with a 70°F air temperature in Indianapolis, Ind., in March would be $0.58/ft² and $0.42/ft² for cuttings propagated under 5 and 10 mol•m¯²•d¯¹, respectively. Therefore, lighting during propagation could potentially reduce finishing energy costs by 27 percent.

In addition to potential energy savings, let’s take a look at the efficiency of lighting during propagation versus finishing. For a 105-cell tray, there are about 76 cuttings per ft², whereas a square foot of 4-inch pots may have from four plants per ft² (spaced on 6-inch centers) to nine plants per ft² (spaced pot-to-pot). Therefore, a square foot of illuminated bench space in propagation can have from 844 to 1,900 percent more plants under light compared to during finishing! Furthermore, propagation areas are generally a fraction of the total production area for growers who propagate in-house, meaning a lower initial investment to light your propagation area.

The Take-Home Message

Our studies show that DLI during propagation and finishing of bedding plants clearly impacts the growth, timing and quality of finished annuals. However, our studies also demonstrate that DLI during propagation and finishing affect finished plants differently. For example, propagation DLI appears to have a stronger effect on the time to flower, while finishing DLI has a stronger effect on flower bud number and shoot dry weight.

When the energy savings during finishing and of lighting propagation space are taken together, using supplemental light may be considered a “low-hanging fruit” when looking at ways to reduce crop time and increase finished plant quality. Growers will need to evaluate their goals and priorities when making management decisions related to investing in supplemental lighting.

Leave a Reply

More From Technology...

December 12, 2017

Research Sheds Light on How to Manage Plant Stress With High-Tech Imagery

An innovative system developed by Chinese researchers uses rapid imagery to indicate plant health, enabling growers to respond quickly and automatically to plant stress.

Read More
ISO-Group-Transplanter-feature

December 11, 2017

Evaluating Robotic Transplanters for Plant Cuttings

There are several factors that might affect your decision to invest in transplant robots, based on initial observations and reported information about available equipment.

Read More
Overhead-irrigation-to-maintain-moisture-content-feature

December 10, 2017

Greens Production Goes High-Tech at lēf Farms

A Finland-based company has developed two new automatic growing systems for lettuce heads and baby leaf lettuce. Learn how one grower is making it work for them.

Read More
Latest Stories

December 12, 2017

Research Sheds Light on How to Manage Plant Stress With…

An innovative system developed by Chinese researchers uses rapid imagery to indicate plant health, enabling growers to respond quickly and automatically to plant stress.

Read More
ISO-Group-Transplanter-feature

December 11, 2017

Evaluating Robotic Transplanters for Plant Cuttings

There are several factors that might affect your decision to invest in transplant robots, based on initial observations and reported information about available equipment.

Read More
Overhead-irrigation-to-maintain-moisture-content-feature

December 10, 2017

Greens Production Goes High-Tech at lēf Farms

A Finland-based company has developed two new automatic growing systems for lettuce heads and baby leaf lettuce. Learn how one grower is making it work for them.

Read More
Monitoring the plant canopy for temperature

December 9, 2017

Infrared Thermometers for Monitoring Plant and Substra…

Growers use many tools to monitor the greenhouse environment. Learn about the best practices for using an infrared thermometer to measuring plant temperature.

Read More
Low-Cost-Build-Your-Own-Irrigation-Sensors-feature

December 4, 2017

Nine Things You Need to Know About Irrigation Sensors

Knowing the amount of water in your soil can help you better manage irrigation, leading to water savings and a stronger bottom line.

Read More
Hanging-Basket-Watering-System-WaterPulse-feature

December 2, 2017

15 Tools That Can Help You Maximize Water Quality and E…

New advancements in water management and irrigation are making it easier for you to manage your water use. Here’s a look at some of the latest offerings from leading suppliers, and how you can best incorporate them into your greenhouse.

Read More
Svensson-Deco-Harmony-Screens

November 23, 2017

Climate Screens Offer Both Form and Functional Benefits

Svensson’s new line of Deco Harmony screens is designed to create better growing conditions for plants on display at retail, while enhancing the customer experience.

Read More
Valtl-Raffeiner-with-Mayer-Potting-Machine

November 18, 2017

Mayer Celebrating 50th Anniversary of its Potting Machi…

Today, the company’s line of automatic potting machines and other technology is being used by growers around the world.

Read More

November 15, 2017

Greenhouse Short Course in March 2018 Features Focus on…

The Greenhouse Crop Production & Engineering Design Short Course, which takes place at the University of Arizona’s Controlled Environment Agriculture Center (CEAC), includes three full days of educational sessions, one day of hands-on training workshops at CEAC, and a commercial Arizona greenhouse tour.

Read More
Smart-Magenta-Greenhouse

November 14, 2017

Smart Solar Greenhouses Designed to Generate Energy and…

Research at the University of California Santa Cruz has shown that the first crops of tomatoes and cucumbers grown inside electricity-generating solar greenhouses are as healthy as those raised in conventional greenhouses.

Read More

November 1, 2017

Gamechanger: How Artificial Intelligence Works in the G…

Artificial intelligence may not be taking over the world yet, but it could make a difference in the greenhouse by helping growers do their jobs more efficiently.

Read More
Fluence Bioengineering red lettuce trials - feature

October 30, 2017

Solving Greenhouse Lighting Issues With New Research an…

Changing out your lighting system isn’t quite as easy as replacing a light bulb, but you’ll find the process a lot smoother with this advice from lighting manufacturers and researchers.

Read More
Rough Brothers HopsHouse

October 18, 2017

New Greenhouse Aimed at Hydroponic Hops Producers

The new greenhouse model is the first single-solution hydroponic greenhouse for year-round hops growth, and harvests anywhere from two to five times a year.

Read More
Seville Production Line

October 17, 2017

Production Technology Conference Tour Attendees See Tec…

AmericanHort’s Production Technology Conference in Dallas, TX, kicked off on Monday, Oct. 10, with a tour of three local production facilities.

Read More
TTA PackPlanter S-2

October 16, 2017

TTA Introduces New Transplanter Suited for Smaller Grow…

The PackPlanter S has 16 grippers and a capacity of 10,000 to 20,000 plugs per hour in a small frame.

Read More
GVZ Glasshouses

October 12, 2017

How to Deal With Common Greenhouse Maintenance Issues

The most common problems often come from a lack of cleanliness and faulty equipment. Here are a number of tips you can follow in each of these areas.

Read More
1B Filling trays for Transplanting Feature

October 9, 2017

Maximize Your Labor Efficiency When Sticking Plant Cut…

Transplanting unrooted cuttings into trays is one of the most labor-intensive activities in greenhouse production.

Read More
AgriNomix

October 8, 2017

Greenhouse Equipment Supplier AgriNomix is Expanding

In an effort to keep up with demand from growers venturing into automation, the company is adding almost 20,000 square feet of warehouses and offices.

Read More