Impact Of Fungicides On Natural Enemies

Previously, I have written articles on the compatibility of alternative pesticides, primarily insecticides and miticides, with biological control agents or natural enemies such as parasitoids and predators. In general, natural enemies tend to be more susceptible to insecticides and miticides than insect and mite pests. However, fungicides are applied routinely in greenhouses to control both aboveground and belowground fungal pathogens. So how compatible are fungicides with natural enemies?

Although fungicides may not be directly or immediately harmful to a specific natural enemy, there may be indirect or sublethal effects, such as delayed development of the prey and natural enemy, delayed adult emergence of the natural enemy or decreased natural enemy survival. There is, in general, less information on the direct (immediate) and indirect (sublethal) effects of fungicides on natural enemies.

In fact, both the Koppert and BioBest Side Effects Manual/Guide contain minimal information on the effects of fungicides on many natural enemies compared to insecticides and miticides. In addition, many studies have involved natural enemies that are typically found in field or fruit crop production systems. 

Harmful Combinations

When using biological control agents in greenhouse production systems, it is important that fungicide applications not directly or indirectly harm natural enemies in order to avoid disrupting the success of biological control programs.

In general, older fungicides tend to be harmful to most natural enemies, which may be associated with these fungicides having a broad mode of action. Sublethal concentrations of fungicides may affect the fecundity or fertility of natural enemy females by either directly reducing oviposition or decreasing percent egg hatch. For example, mancozeb (Protect T/O) reduces egg-hatch of Amblyseius andersonii eggs. However, mancozeb displays no indirect effects on females and does not impact offspring or young in regards to growth rate and mortality. Mancozeb has been shown to reduce the parasitism rate of the caterpillar parasitoid, Trichogramma cacoeciae by 100 percent. Both mancozeb and thiophanate-methyl (Cleary’s 3336 or Fungo) are directly harmful to the predatory mite, Typhlodromus pyri. Applications of thiophanate-methyl may also result in sublethal effects such as sterilizing T. pyri females. Additionally, mixtures of mancozeb or thiophanate-methyl with the insecticide chlorpyrifos (Dursban or DuraGuard) are more directly toxic to the predatory mite than when these pesticides are applied separately.

Although no longer commercially available, benomyl (Benlate) is toxic to the immature and adult stages of several predatory mites including Amblyseius fallacis and Metaseiulus occidentalis. Predatory mites exposed to benomyl applications tend to have higher adult mortality and decreased female reproductive capacity or fecundity. Furthermore, predatory mites are negatively affected when consuming prey that contains benomyl residues. The fungicides, vinclozolin (Ornalin) and iprodione (Chipco 26019) have been shown to be directly harmful to the first and second instar larvae of the coccinellid, Adalia bipunctata. Maneb, which is an old fungicide and no longer registered for use in greenhouses, is extremely toxic to the parasitoid Microplitis croceipes; however, maneb is not adversely harmful to the commonly used twospotted spider mite (Tetranychus urticae) predatory mite (Phytoseiulus persimilis).

The newer fungicides are typically less toxic to natural enemies, which may be associated with their site-specific mode of action. For example, the demethylation-inhibiting (DMI) fungicides triflumazole (Terraguard) and myclobutanil (Eagle), and the strobilurin fungicide trifloxystrobin (Compass) are not harmful to the twospotted spider mite predator, Galendromus occidentalis. None of the fungicides exhibited any direct or sublethal effects. For example, the fungicides did not affect egg hatch, female fecundity rate or increase immature or adult mortality compared to the untreated checks. The fungicides triadimefon (Strike) and fenarimol (Rubigan) have been shown to control diseases without harming predatory mites, which avoids disrupting the biological control of twospotted spider mite. 

In The Lab

In our research, we have demonstrated under laboratory conditions that the fungicides fosetyl-Al (Aliette) and mefenoxam (Subdue Maxx), which are typically applied as a drench to control root rot pathogens such as Pythium spp. and Phytophthora spp., are compatible with the soil-predatory mite Stratiolaelaps scimitus (=”Hypoaspis miles”) since neither fungicide negatively affected the development of the protonymph stage and reproduction of adult females.

Although not directly harmful to natural enemies, fungicides may have repellent activity that may deter natural enemies from locating insect or mite hosts or inhibit foraging behavior, which will affect the ability of natural enemies to regulate insect and mite pests.

It is important to note that most studies associated with evaluating the effects of fungicides on natural enemies are conducted under laboratory evaluations in which the natural enemies are enclosed in Petri dishes exposed to fungicide treatments (either wet or dry residues). These evaluations tend to over-estimate the effects of fungicides compared to those effects observed in the field since the laboratory tests are designed to represent a worst case situation. If the fungicides are not harmful under laboratory conditions then in all likelihood they will not be harmful when used in greenhouses. In order to avoid any harmful effects to natural enemies, it is best to make releases several days following a fungicide application. However, fungicide applications may still decrease host quality, which may indirectly increase parasitoid or predator mortality. For example, parasitoid females may not deposit eggs in unsuitable hosts and predators may avoid consuming hosts that are not a viable food source.

Any differences in natural enemy susceptibility to fungicides may be due to a number of factors including whether the natural enemy is a parasitoid or predator, species of natural enemy, life stage (e.g. egg, larva, pupa and adult) sensitivity, application rate used, timing of application and mode of action of the fungicide. All these factors are complex primarily due to the different interactions that may occur among the aforementioned factors and the variability in natural enemy sensitivity. Furthermore, any harmful effects from fungicide applications may not be associated with the active ingredient, but may be due to the inert ingredients, such as carriers or surfactants. Fungicides applied as a drench to the growing medium may negate any negative effects to natural enemies residing on aboveground plant parts (e.g. leaves and stems).

The compatibility of natural enemies with fungicides is highly variable. Interactions may be associated with the type of fungicide, whether the natural enemy is a parasitoid or predator, and the stage of development. More research is needed to assess the potential compatibility of commercially available natural enemies with fungicides in order to avoid disrupting successful biological control programs.

Leave a Reply

2 comments on “Impact Of Fungicides On Natural Enemies

More From Disease Control...

March 4, 2015

Nexus Corporation’s Cheryl Longtin Encourages Women To Seek Volunteer Leadership Opportunities

When Cheryl Longtin came to the horticulture business in 1994, she applied her experience in the automotive industry to promote the adoption of more technology in greenhouse production. Longtin says horticulture, with its rich family tradition, has long promoted women in the industry compared to other industries, but women in horticulture must continue to seek out opportunities to provide volunteer leadership in organizations that shape the future of the business.

Read More

March 4, 2015

Second Annual GreenhouseConnect Will Bring Growers and Suppliers Together in San Diego This October

Following a successful inaugural event in Tampa last fall, Greenhouse Grower has announced the dates of its second annual GreenhouseConnect: October 26-29, 2015. Representatives of an expected two dozen leading greenhouse operations from across the U.S. will join senior-level suppliers at Rancho Bernardo Inn in San Diego for several days of one-on-one strategic meetings, a growers-only roundtable, informational sessions and a variety of networking events.

Read More
cultivate'15 logo

March 4, 2015

Cultivate’15: AmericanHort Announces What’s New

In an industry that has seen major changes occurring at a fast pace, many industry professionals leave Cultivate with their heads spinning and no clear idea of how to regroup and strategize. Cultivate’15 is “Changing the Game.” As this year’s focus, Changing the Game will call your attention to the ways in which our industry has changed and your opportunities to compete successfully.

Read More
Latest Stories
Rose Rosette on Knockout rose, May 2013. Photo credit: Alan Windham, University of Tennessee

March 2, 2015

Rose Rosette Disease Fight Gets A Boost From Government…

In 2014, $4.6 million was awarded through the Farm Bill to tackle rose rosette disease, a devastating pathogen that affects one of the industry’s most important crops.

Read More
Fig 1 Leafy Gall On Leucanthemum Becky

March 2, 2015

How To Prevent Leafy Gall Before You Lose Plants

Leafy gall is a nasty disease that can go undetected until plant damage is done. Take these steps to protect your crops from infection.

Read More

October 6, 2014

EPA Registration Granted To Stockton’s Timorex Go…

Timorex Gold, a broad spectrum fungicide, has received EPA registration in the U.S. for disease control on organic and conventional crops.

Read More

August 5, 2014

Prevention Measures For Impatiens Downy Mildew Start At…

Impatiens downy mildew is a fast-moving disease that can quickly go from bad to worse if conditions are right. In case you missed it, here are some of the highlights from Ann Chase's (Agricultural Consulting) downy mildew update at Cultivate'14.

Read More

July 22, 2014

Spray Coverage Key To Uniform Pest And Disease Control …

Greenhouse growers need to understand proper spray application coverage when applying pesticides and growth regulators to ensure successful treatment results.

Read More
Jeff Rich

July 18, 2014

Removing The Mask Of Phytophthora

Phytophthora is the number one disease of floriculture and nursery crops nationwide. Here are some effective measures growers can take to reduce the occurance of this pathogen, known as "the plant destroyer."

Read More

June 27, 2014

Biocontrols Can Be Highly Effective With Serious Commit…

Biocontrols can be very effective when the greenhouse operator makes a serious commitment to using them for integrated pest control. See how Parkway Gardens has successfully used biocontrols for the last nine years.

Read More

May 1, 2014

Be On The Lookout For Botrytis Blight

Greenhouse growers will be challenged by weather forecasts for cloudy and rainy conditions favoring Botrytis blight. Remembering cultural practices and correct fungicides will help until we get more sunshine.

Read More

April 18, 2014

Growth Products Introduces Improved Packaging For Compa…

Following the suggestion of a user of Companion Biological Fungicide, Growth Products has made improvements to the product's packaging to make it easier to handle and more durable.

Read More

April 8, 2014

Switching To Organic Fertilizer

Growers of short-term vegetable or ornamental crops should have an easier time switching from conventional mineral fertilizers to organic fertilizers.

Read More
Edema om Ivy Geranium. Photo credit: SHS Griffin

March 27, 2014

Geranium Leaf Spots: Is it Rust or Edema?

Damp conditions can lead to both rust and edema in geranium. Here's some advice on scouting and treating each.

Read More

March 21, 2014

Dümmen Clarifies Growers’ Options Regarding The K…

The Dümmen Group has released a statement to clarify growers' options regarding regulations the Kansas Department of Agriculture (KDA) placed on petunia cuttings sourced from Dümmen's Las Mercedes, El Salvador farm during weeks 51 through 7.

Read More
Impatiens downy mildew, Photo Credit: Ian Maguire, Biological Scientist, University of Florida

March 19, 2014

Impatiens walleriana Makes Possible Comeback In 2014 Se…

Despite efforts to thwart downy mildew, growers, researchers and landscape experts are predicting a continued impact on Impatiens walleriana supply issues for the 2014 season.

Read More

March 18, 2014

Exclusive: Kansas Department Of Agriculture’s Jef…

Greenhouse Grower talked to the Kansas Department of Agriculture’s Plant Protection and Weed Control Program Manager Jeff Vogel to learn about the Kansas Pest Freedom Standards and how the state is regulating tobacco mosaic virus (TMV) on petunias this season.

Read More

March 18, 2014

Kansas Department of Agriculture Taking Measures On Pet…

The Kansas Department of Agriculture (KDA) has ordered growers and retailers to destroy all petunias received from the Dümmen Group's Las Mercedes, El Salvador farm.

Read More
Leaf Distortion

March 18, 2014

Kansas Department of Agriculture BMPs For Scouting TMV …

The Kansas Department of Agriculture is asking growers and retailers to follow regulatory action and recommendations in scouting petunias for symptoms of tobacco mosaic virus (TMV).

Read More

March 13, 2014

Two BioSafe Systems Products Proven To Reduce Fusarium

In a recent study, SaniDate 12.0 and ZeroTol 2.0 from BioSafe Systems were evaluated as sanitizing products to control fusarium in irrigation water.

Read More

February 26, 2014

BioSafe’s OxiPhos And ZeroTol Are Effective For C…

A recent study has determined the effectiveness of OxiPhos and ZeroTol 2.0 in controlling impatiens downy mildew.

Read More