Ventilating And Cooling FAQ From NGMA

NGMA

What is ventilation?

Ventilation is the exchange of air between the inside and outside of the greenhouse. It is used to remove heat from solar radiation, to replenish carbon dioxide and to help control the levels of relative humidity.

What is a ventilation rate?

The ventilation rate refers to the amount of ventilation per unit area. It is measured as cubic feet of air per minute per square foot of greenhouse floor area (CFM per square foot) because the heat load derives from solar radiation and is directly proportional to floor area.

What is the difference between natural and mechanical ventilation?

Natural ventilation results from the wind and stack action from ventilator sashes. Mechanical ventilation is created by electric fans and related equipment.

What does cooling refer to?

Cooling consists of reducing the air temperature by the evaporation of water into the air-stream. The system that does this and moves the cooled air through the greenhouse and exhausts the warmed air is the cooling system.

What is circulation?

Circulation is the movement and mixing of air in a greenhouse to promote uniformity in temperature and humidity and to provide proper air motion throughout the greenhouse.

Why is circulation important to my plants?

Continuous circulation produces a gentle air movement, which maintains a better leaf surface microclimate and prevents pockets of disease-producing high humidity.

Why is ventilation important?

Ventilation allows for the better control of temperature. By allowing an increase in light intensity, which is important to good plant growth, the solar heat can be more effectively removed.

Why should I use exhaust fans?

Exhaust fans are used to provide suffcient airflow through the greenhouse to remove solar heat as fast as it enters. Because the air is warmed gradually as it passes through the house, absorbing heat, the flow rate should be suffcient both to hold the temperature rise to a minimum and to be economically practical.

How do I choose a system?

The selection and arrangement of the ventilating and cooling equipment is determined by the size and type of greenhouse structure and the direction and velocity of the airflow through the house. Allowances also should be made for air density, light intensity and the permissible temperature variation through the house.

How do I get the best results from my system?

For optimum performance, it is necessary to properly size and arrange air inlet openings to produce a uniformly distributed, non-turbulent airflow pattern in the growing area to avoid the mixing of the lower air with the hot air in the upper section of the greenhouse. A definite airflow pattern in a given direction requires an air inlet opening continuous for the entire side or end of the greenhouse. The inlet opening should introduce the air in a horizontal direction at crop level, should not be deflected up or down and should have a low velocity to minimize turbulence and mixing.

Do I need to change my system in the summer?
During the summer, mechanical ventilation alone will usually not maintain the desired greenhouse temperature because the outdoor air is too warm. A way to cool the incoming air should be provided.

What happens to the cooled air as it moves through the house?

As the cooled air moves through the house, it picks up solar heat and increases in temperature by the time it reaches the exhaust fans. This temperature increase is a result of the heat removal process and will vary depending on design. Increasing the airflow or reducing the light intensity can reduce the temperature change. Increased fan capacity can produce increased airflow; shading can reduce light intensity; and good maintenance can minimize the infiltration of air leakage.

Is elevation a factor in creating ventilation and cooling systems?

The air’s capacity to remove heat depends on its weight, not its volume. Because air is less dense at higher altitudes, the elevation of the greenhouse must be considered in design calculations. At higher elevations, a greater volume of air is needed to provide the equivalent weight of air required at elevations that have been established as normal.

How many fans are needed and what do I need to know before having them installed?

The size of fans selected determines the number of fans required. Adequate fans should be used to provide a spacing of not more than 25 feet along the exhaust side of the greenhouse. When possible, the fans should be located on the downwind side of the greenhouse. When three or fewer fans are used in a given installation, one of them should be a two-speed fan to provide for more flexibility of ventilation. Fans should be guarded properly to prevent workers or animals from coming in contact with any moving parts.

For most reliable fan performance, only use fans that have been tested and rated by the Air Movement and Control Association (AMCA) standard test code and that bear the AMCA Certified Rating Seal.

Where should the cooling pad be placed?

The cooling pad should be continuous along the entire side or end of the greenhouse. Pad height is determined by dividing the total pad area by the length. Pads should be confined and secured in a way that provides uniform airflow, prevents sagging, avoids puncturing holes or large openings in them and promotes uniform water flow through the entire length of the pads. The pads should be installed for ease of removal and withstand normal handling and usage. Whenever possible, the air inlet should be constructed in such a way that it can be readily opened and closed without removing the pads.

It is preferable to have the pad assembly located inside the air inlet opening. This will produce less turbulent airflow through the house. For such an arrangement, the air inlet opening need not be continuous but should be at least well distributed.

What if the pad is located outside the air inlet opening?

If the pad is located outside the air inlet opening, it should be continuous, have no large obstructions and should be centered in elevation on the center of the pad so that the airflow is horizontal as it leaves the opening. When the height of the pad exceeds that of the air inlet opening, the pad will extend above and/or below the opening. When this occurs, the pad should be set back from the wall or sash at a distance of at least half the amount of the extension to provide ample room for air to pass uniformly through the entire pad.

If possible the pads should be located on the prevailing wind side of the greenhouse. When the greenhouse is sheltered from prevailing winds by another building or greenhouse located within 25 feet, the location of the pads in relation to prevailing winds is not significant.

How and why should I use baffles?

The cooling air passing through the house will tend to diverge at about a 7-degree-angle or one foot in every eight. Vertical baffles usually are installed particularly with the house, to reduce mixing and keep cool air down at plant level. The baffles should be transparent, spaced approximately 30 feet and held in a fixed vertical plane, and their lower edges should be well above plant level. In greenhouses containing raised benches, a substantial volume of air may travel under the benches to the fan without removing much heat.

A baffle covering two-thirds of the distance from the bench to the ground will force most of the cooling air to crop level for more effective plant cooling.

How do I maintain my water system?

All elements of the water system should be kept well covered to protect it from insects and windborn dirt, which will cause clogging. The water returned to the sump should be screened. The ends of the water distribution pipes should be provided with removable caps or valves to allow easy flushing out for cleaning. Because water is used up in the evaporative cooling process, a supply of makeup water is needed. An automatic float valve should be used for this purpose and also to maintain a proper water level in the sump.

Are winter and summer ventilation systems the same?

Essentially winter and summer ventilation systems are two separate systems having different characteristics and requirements. However, they must tie in with each other to switch from one system to the other during spring and fall. The transition is very important as it determines the inside to outside temperature difference available on a mild, sunny day, and it establishes the airflow design capacity of the winter ventilation system.

Do I need to ventilate differently in the winter?

Mechanical ventilation essentially provides the same benefits regardless of the season, but winter calls for different airflow principals. In the winter, outdoor air is too cold to introduce directly on the plants. The goal of winter ventilation is to introduce the cold air in a turbulent manner. This causes the cold air to mix with the warmer air in the greenhouse, without producing cold drafts at plant level. This mixing is the result of using small high-velocity jets.

In a greenhouse, it is desirable to have many small, well-distributed openings rather than one large one for winter ventilation. It is important that all areas of the greenhouse are at the same temperature. To achieve this, the ventilating system must distribute the air uniformly throughout the house and maintain positive air movement and continuous circulation.

Can I use gravity to circulate the air in my greenhouse?

A powered ventilating system has a real advantage over gravity systems that rely on thermal air currents because it has the energy required to provide uniform air distribution and mixing. Fans that mechanically ventilate greenhouses, combined with perforated transparent plastic tubes, make an ideal system for introducing cold air into a greenhouse in the winter without cold drafts.

What do I use thermostats for in my greenhouse?

Thermostats or controllers are used to turn fans on and off as required to meet changes in outdoor climate conditions and thereby maintain more uniform greenhouse temperatures with lower operation costs.

What do I use a humidistat for?

During warm weather, a humidistat can be used to control the pump of the cooling pad system to help prevent excessive greenhouse humidity. A humidistat that is wired to operate exhaust fans also can help prevent excessive humidity.

Leave a Reply

More From Equipment...
Cannabis Structure

August 23, 2016

5 Factors To Consider In Your Cannabis Structure

Along with the size and specs of your greenhouse, it's also important to focus on ventilation, light deprivation, benching, irrigation, and odor control.

Read More
Canadian Greenhouse Conference

August 17, 2016

Get Ready For The Canadian Greenhouse Conference In October

This year’s conference, which takes place Oct. 5-6 in Niagara Falls, Ontario, will feature discussions on greenhouse technology, integrated pest management, and marketing, as well as a bus tour of local production facilities.

Read More
Dosatron Injector On Boom

August 16, 2016

Why You Should Add An Injector To Your Boom System

An injector automates the process of applying plant additives and chemicals, reduces the amounts used with consistent results, shrinks labor costs associated with traditional spraying methods, and minimizes human exposure to treated areas.

Read More
Latest Stories
Floricultura Bench Pulling System

July 31, 2016

Automation Saves Labor And Space At Floricultura Pacifi…

This Salinas, CA, orchid grower brings plants to its workers through automation that saves valuable time and takes full advantage of available growing space.

Read More
Harvest Automation HV 100 Feature

May 27, 2016

Harvest Automation Robot Helps You Move Plants Without …

The Harvest Automation HV-100 robot units use lasers and sensors to handle some of the most labor-intensive tasks in the greenhouse.

Read More
HV-100 Robots (Harvest Automation)

May 3, 2016

Harvest Automation Makes Strong Commitment To Greenhous…

The company recently announced it is selling off its robotic warehouse automation business to focus more on providing robotic materials handling to the greenhouse, vegetable, and fruit markets.

Read More
Priva FS Reader

May 2, 2016

What’s New In Greenhouse Environmental Controls

Growers today are looking for systems that save energy, are easy to use, and can be accessed remotely. New products from leading manufacturers are designed to tap into these needs.

Read More
Sentinel In The Greenhouse Feature

April 13, 2016

Monitor Your Greenhouse Conditions Without A Web Connec…

The Sentinel system from Sensaphone provides 24/7 monitoring of temperatures, power outages, and other potential problems, in locations where connectivity is unavailable.

Read More
Philips LED Lunar Greenhouse

March 29, 2016

Philips Lighting And University Of Arizona Study Shows …

A collaboration between Philips And The University of Arizona found that using energy-efficient LED lighting in a prototype lunar greenhouse resulted in an increased amount of high-quality edible lettuce while dramatically improving operational efficiency and use of resources.

Read More
Priva Tomato Deleafing Robot

March 22, 2016

Priva Developing Deleafing Robot For Tomatoes

The deleafing robot, which is designed to mimic the performance of a human while being economically viable, will be tested and evaluated by Dutch growers later this year.

Read More

February 23, 2016

How Light Diffusion Works In The Greenhouse

Ken Aguilar of SolaWrap Films shares how light diffusion technology offers many benefits for greenhouse crops.

Read More

February 22, 2016

New Greenhouse Transplanters Offering More Versatility

New transplanters on the market offer flexibility in speed, plug tray compatibility, and functionality.

Read More

February 20, 2016

Hydrogel Technology Means Growers And Their Customers C…

Water and nutrient management are critical elements for quality plant production in the greenhouse. Maintaining the right amounts of available moisture and fertilizer at all times can be pretty labor intensive, but there are tools available to help you keep these inputs at optimum levels as efficiently as possible. Recently, we visited Evonik Industries’ North Carolina production plant for to see how one of these products — Stockosorb — is made, how it works, and learn the benefits of incorporating these tools in your own operation. Learn more about Evonik Industries’ Stockosorb hydrogel product on the Stockosorb website.  

Read More
Using cables in place of a solid belt, the Echo-Veyor design doesn’t cast shadows, so plants can be grown underneath

February 19, 2016

Echo-Veyor Has Made Plant Handling Easier For Greenhous…

Growers are creating improvements in a range of functions with customized plant handling systems. Several growers have realized efficiencies through customized conveyor solutions, by working with Cherry Creek Systems, based in Colorado Springs, CO, to install its Echo-Veyor cable-driven transport system. Designed to support multiple different tray types and pot sizes, each system is custom-designed for the individual needs of the operation. It can tie into existing posts or be built into a free-standing system.     The Echo-Veyor system has helped growers like Dallas Johnson Greenhouses and Rockwell Farms increase efficiency of product handling in a variety of functions, ultimately reducing time, labor, and labor costs, and improving job functions for employees working on spacing plants, pulling and processing orders, and shipping. Dallas Johnson Greenhouses in Council Bluffs, IA, reduced labor, saved time, improved its team’s performance, and saw improved plant quality at retail after installing its Echo-Veyor shipping […]

Read More
Metrolina Greenhouses keeps a 4-acre barn filled with wood chips, sourced locally from forestry waste and old pallets. The barn can hold a three- to four-week supply of wood chips

February 18, 2016

Metrolina Greenhouses Has Improved Heating Efficiency W…

Sustainability started to become a keyword in the horticulture industry in the late 2000s, when growers began converting their heating systems to greener options to save on energy costs and reduce their impact on the environment. However, there haven’t been many operations that have invested in sustainable solutions on as large of a scale as Metrolina Greenhouses at its Huntersville, NC, headquarters. Six years later, the operation is still fully committed to its biomass heating system and everything it entails.     Metrolina first fired up its Vynke biomass system from Belgium in 2010. The four wood boilers cover 95% of the operation’s heating needs at its 201-acre main location in Huntersville, NC, and Metrolina still maintains its traditional heating systems for back up and to provide flexibility of resources. Wood chips are sourced locally, with the majority from local forestry activities like wood harvesting companies and developers. The other […]

Read More

January 19, 2016

Tips For Cherry-Picking The Right LED Lighting Solution…

If you want to find the right LED lighting solution for your greenhouse, start with these tips from top lighting manufacturers.

Read More
Feature Image Cob 700 (NewLux)

November 28, 2015

15 LED Lighting Solutions For Your Greenhouse

Narrowing in on the right LED lighting product often comes down to considering your specific crop needs and growing requirements to see what works best for your application. Here are 15 LED products to take into account when choosing the right fit for your greenhouse.

Read More

October 27, 2015

How Dallas Johnson Greenhouses Is Simplifying Shipping

Two years ago, Dallas Johnson Greenhouses, a 61-acre operation in Council Bluffs, Iowa, and No. 21 of Greenhouse Grower’s Top 100 Growers, was struggling to get its orders out. With its range of potted annuals, there were so many skus that it was impossible to get enough carts into the shipping greenhouse, and the crew couldn’t get orders processed fast enough. As a result, the operation was consistently pulling orders until midnight every night during the busy shipping season, says President and CEO Todd Johnson. So Johnson got together with Arie Van Wingerden at Cherry Creek Systems to discuss his problem, and what they came up with has changed everything, Johnson says. Inside one of Dallas Johnson Greenhouses’ existing structures, the team installed a shipping system made with Echo-Veyors, the popular cable conveyor system designed by Cherry Creek Systems. The system was placed right in the front of the greenhouse, […]

Read More
Tidal Creek Growers

October 24, 2015

Five Tips For Successful Use Of Boom Irrigation Lightin…

Michigan State University Extension shares five tips to help growers use boom irrigation lighting more effectively to accelerate flowering of long-day ornamental crops.

Read More

October 8, 2015

Industry Standards For Greenhouse Lighting On The Horiz…

As the use of LEDs has risen among greenhouse growers, so have concerns about the best way to measure and compare the many LED light products across the market. As a result, the lighting industry is responding to a call for greater transparency and the development of standardized measuring and testing methods.

Read More

September 28, 2015

11 Products For Precision Greenhouse Growing

These new options in equipment, automation, structures, lighting and software are designed to help growers run their operations with efficiency and accuracy and at a lower cost.

Read More
[gravityform id="35" title="false" description="false"]