Chlorine Dioxide In Horticulture: A Technology Review

Chlorine Dioxide In Horticulture: A Technology Review

Horticultural operations are facing increasing pressure to solve sanitation issues related to water treatment. Some of the pressure is external originating from government regulations and consumer preferences. Most of the pressure, however, is internal and includes better disease management, integrating capture of irrigation runoff with recycling opportunities, elimination of biofilm and algae control.

The list of available water treatment technologies is a short one. When the unusual demands of horticultural production and post-production practices are considered, the list of technologies that offers effective solutions becomes even shorter. Chlorination, ultraviolet light, chlorine dioxide, ozone, copper and peroxide comprise the list most growers are considering. This article will present a technology review of chlorine dioxide and discuss its potential to solve sanitation issues in greenhouses and nurseries.

Biofilm, Sanitation’s Epicenter

Biofilm is a living complex of organic and inorganic components that becomes established on surfaces that are in regular contact with water. Such surfaces include pressurized irrigation lines, non-pressurized recirculation system return lines, holding tanks, mixing tanks, containment vessels and so on. Largely comprised of highly adaptive bacteria, biofilm layers attach themselves to hard surfaces and then grow, becoming thicker and quite established over time.

In horticultural operations such as greenhouses and nurseries, common fertilizer injection actually serves as an accelerant to biofilm growth. Most growers are quite familiar with the presence of biofilm in their fertilizer lines. The layer of slimy growth is seen whenever a line is cut into for repair. Biofilm growth is not restricted to fertilizer lines, however, and is also common in clear water lines, although usually by a slightly less dramatic presence.

An interesting relationship exists between the bacterial complexes making up biofilm and algae. The relationship is a synergistic one; what one needs the other provides. In fact, they work so well together that biofilm is able to provide algae with sufficient energy to substitute for algae’s need for sunlight. Any grower who has scratched his or her head after cutting into an underground pipe and found it lined with green, algae-laden biofilm in the absence of sunlight has personally experienced this phenomenon. Consider this a highly evolved organic system, one that has survived the test of time.

It’s no wonder most water treatment technologies are not capable of breaking biofilm down. The photo at left shows sections of PVC pipe cut longitudinally to show the inner surface; top–new line, middle–clear water line showing tan colored biofilm contamination, bottom–fertilizer line showing algae and biofilm complex.

Chlorine Dioxide’s Potential

Chlorine dioxide is widely viewed as one of, if not the most effective, sanitizing agents created by man. A decade ago when the Hart Senate building in Washington, D.C. was infested with anthrax, it was chlorine dioxide that was used to disinfest the building. In that application, the building was gassed with chlorine dioxide. In horticulture it is injected via its liquid state into irrigation lines.

One property of chlorine dioxide that provides a large part of its potential is it is a gas that is very soluble in water. On-site generator technology allows for the production of a stock concentrate in the 2,000 to 3,000 ppm range. This stock solution is then injected into irrigation systems to a final, hose-end concentration below 1.0 ppm that results in excellent water sanitation.

Connected to this solubility characteristic is that as a gas dissolved in water, chlorine dioxide is free to diffuse or move within its solution. Due to this property, its molecules are free to move about within an irrigation line. They capitalize on this freedom of movement by penetrating biofilm layers and killing the complex right down to its attachment sites along the hard surface it has colonized. With the exception of ozone, no other sanitizing technology has the ability to diffuse this effectively.

Connecting The Dots

Once it is understood that biofilm flourishes in horticultural operations, it encourages algae and it is capable of sustaining disease organisms, including waterborne plant pathogens, we can associate value to its control. Connecting these dots along the sanitation and disease control continuum allows our industry to hone in on how to eliminate the problems and improve operational sanitation significantly. Imagine the corner of a subirrigation bench with algae and crop debris. It can be assumed that such contamination is also capable of harboring plant pathogens, particularly those that are waterborne, as well as insects such as fungus gnats and shore flies.

Greenhouse Vegetable Production

A large greenhouse tomato, pepper and cucumber operation in California (pictured at right) injects chlorine dioxide into its irrigation water and post-harvest water network to sanitize various production and post-production systems. First, constant injection to achieve a residual of 0.25 to 0.50 ppm in the irrigation water has removed pre-existing biofilm in the lines and prevents its re-establishment. A secondary benefit of this application is elimination of drip-emitter clogging resulting from organic matter deposition associated with biofilm growth and sloughing.

Algae control is another secondary benefit as the trough irrigation system is significantly cleaner with respect to algae buildup than prior to treatment. Because control is a function of continual contact between treated water and the surfaces, complete elimination of algae is dependent on the physical design of the irrigation system. Design flaws that include dead legs in irrigation runs and areas where both effective contact and regular contact time are not achieved need to be identified. These stubborn areas within an irrigation system next need to be managed with an additional effort that often involves periodic treatment with a higher dose of chemical. Such design flaws should be eliminated as irrigation systems are expanded within an operation. Once again, connecting the dots is allowing us to better understand the problems in order to solve them.

Once the tomatoes are harvested, they literally are dumped into an underground water network that floats them to the grading and packing area. Once in this area the tomatoes are transferred to a water bath containing chlorine dioxide for surface sanitation as they are cleaned, graded and packed. Tomatoes are received in a packing area via an underground water system and are raised into a chlorine dioxide solution as they float through the sanitizing and cleaning process.

Another advantage that chlorine dioxide offers with regard to vegetable and other edible crop sanitation is that because of its gaseous nature, any molecules not consumed in surface sanitation escape to the air and eliminate the need to rinse the product with water to remove any residual chemical. This avoids the issue of ensuring that rinse water, in itself, is free of microbial organisms and not re-contaminating the product. Freshly harvested produce is passed through a field-level hydro-cooler. Chilled water removes field heat, rinses soil and debris and also provides initial surface sanitizing of produce on its way to a packing shed. The water in this system is treated with chlorine dioxide.

Outdoor Nursery Production

An outdoor nursery in California recently switched to chlorine dioxide injection with a main objective of improving drip emitter performance. With year-round production and an irrigation system that captures runoff in a surface pond for reuse, clogging of drip emitters due to biofilm accumulation was a major problem. Pictured above are two drip emitters (left–new emitter; right–biofilm clogged emitter). Note the pyramidal accumulation of algae and biofilm clogging the emitter tip causing failure.

Constant inspection of drip lines and replacement of clogged emitters had grown into a full-time responsibility for one employee of this nursery. Chlorine dioxide treatment has eliminated the problem with minimal attention now being required to maintain the drip lines.

Greenhouse Ornamental Production

The ranks of greenhouse growers using, trialing and considering chlorine dioxide includes those with the following objectives:

– Elimination of biofilm from irrigation lines and holding tanks

– Elimination of drip emitter clogging

– Significant reduction of algae

– Treat irrigation water for disease control

– Treat captured runoff water for re use

Pictured above is a boom irrigation system applying chlorine dioxide treated water in a vegetative propagation greenhouse.

In the months and seasons ahead this group of growers will be the source of additional educational articles as it learns how to harness the potential of chlorine dioxide.

Leave a Reply

2 comments on “Chlorine Dioxide In Horticulture: A Technology Review

    1. Nop, my dear mike, the essentials on ClO2 is that doesn’t form molecular chlorine as hipo does, so the benefits are only with ClO2. Any doubt? send me an e-mail.

More From Equipment...
Harvest Automation HV 100 Feature

May 27, 2016

Harvest Automation Robot Helps You Move Plants Without People

The Harvest Automation HV-100 robot units use lasers and sensors to handle some of the most labor-intensive tasks in the greenhouse.

Read More
HV-100 Robots (Harvest Automation)

May 3, 2016

Harvest Automation Makes Strong Commitment To Greenhouse Production Market

The company recently announced it is selling off its robotic warehouse automation business to focus more on providing robotic materials handling to the greenhouse, vegetable, and fruit markets.

Read More
Priva FS Reader

May 2, 2016

What’s New In Greenhouse Environmental Controls

Growers today are looking for systems that save energy, are easy to use, and can be accessed remotely. New products from leading manufacturers are designed to tap into these needs.

Read More
Latest Stories
Harvest Automation HV 100 Feature

May 27, 2016

Harvest Automation Robot Helps You Move Plants Without …

The Harvest Automation HV-100 robot units use lasers and sensors to handle some of the most labor-intensive tasks in the greenhouse.

Read More
HV-100 Robots (Harvest Automation)

May 3, 2016

Harvest Automation Makes Strong Commitment To Greenhous…

The company recently announced it is selling off its robotic warehouse automation business to focus more on providing robotic materials handling to the greenhouse, vegetable, and fruit markets.

Read More
Priva FS Reader

May 2, 2016

What’s New In Greenhouse Environmental Controls

Growers today are looking for systems that save energy, are easy to use, and can be accessed remotely. New products from leading manufacturers are designed to tap into these needs.

Read More
Sentinel In The Greenhouse Feature

April 13, 2016

Monitor Your Greenhouse Conditions Without A Web Connec…

The Sentinel system from Sensaphone provides 24/7 monitoring of temperatures, power outages, and other potential problems, in locations where connectivity is unavailable.

Read More
Philips LED Lunar Greenhouse

March 29, 2016

Philips Lighting And University Of Arizona Study Shows …

A collaboration between Philips And The University of Arizona found that using energy-efficient LED lighting in a prototype lunar greenhouse resulted in an increased amount of high-quality edible lettuce while dramatically improving operational efficiency and use of resources.

Read More
Priva Tomato Deleafing Robot

March 22, 2016

Priva Developing Deleafing Robot For Tomatoes

The deleafing robot, which is designed to mimic the performance of a human while being economically viable, will be tested and evaluated by Dutch growers later this year.

Read More

February 23, 2016

How Light Diffusion Works In The Greenhouse

Ken Aguilar of SolaWrap Films shares how light diffusion technology offers many benefits for greenhouse crops.

Read More

February 22, 2016

New Greenhouse Transplanters Offering More Versatility

New transplanters on the market offer flexibility in speed, plug tray compatibility, and functionality.

Read More

February 20, 2016

Hydrogel Technology Means Growers And Their Customers C…

Water and nutrient management are critical elements for quality plant production in the greenhouse. Maintaining the right amounts of available moisture and fertilizer at all times can be pretty labor intensive, but there are tools available to help you keep these inputs at optimum levels as efficiently as possible. Recently, we visited Evonik Industries’ North Carolina production plant for to see how one of these products — Stockosorb — is made, how it works, and learn the benefits of incorporating these tools in your own operation. Learn more about Evonik Industries’ Stockosorb hydrogel product on the Stockosorb website.  

Read More
Using cables in place of a solid belt, the Echo-Veyor design doesn’t cast shadows, so plants can be grown underneath

February 19, 2016

Echo-Veyor Has Made Plant Handling Easier For Greenhous…

Growers are creating improvements in a range of functions with customized plant handling systems. Several growers have realized efficiencies through customized conveyor solutions, by working with Cherry Creek Systems, based in Colorado Springs, CO, to install its Echo-Veyor cable-driven transport system. Designed to support multiple different tray types and pot sizes, each system is custom-designed for the individual needs of the operation. It can tie into existing posts or be built into a free-standing system.     The Echo-Veyor system has helped growers like Dallas Johnson Greenhouses and Rockwell Farms increase efficiency of product handling in a variety of functions, ultimately reducing time, labor, and labor costs, and improving job functions for employees working on spacing plants, pulling and processing orders, and shipping. Dallas Johnson Greenhouses in Council Bluffs, IA, reduced labor, saved time, improved its team’s performance, and saw improved plant quality at retail after installing its Echo-Veyor shipping […]

Read More
Metrolina Greenhouses keeps a 4-acre barn filled with wood chips, sourced locally from forestry waste and old pallets. The barn can hold a three- to four-week supply of wood chips

February 18, 2016

Metrolina Greenhouses Has Improved Heating Efficiency W…

Sustainability started to become a keyword in the horticulture industry in the late 2000s, when growers began converting their heating systems to greener options to save on energy costs and reduce their impact on the environment. However, there haven’t been many operations that have invested in sustainable solutions on as large of a scale as Metrolina Greenhouses at its Huntersville, NC, headquarters. Six years later, the operation is still fully committed to its biomass heating system and everything it entails.     Metrolina first fired up its Vynke biomass system from Belgium in 2010. The four wood boilers cover 95% of the operation’s heating needs at its 201-acre main location in Huntersville, NC, and Metrolina still maintains its traditional heating systems for back up and to provide flexibility of resources. Wood chips are sourced locally, with the majority from local forestry activities like wood harvesting companies and developers. The other […]

Read More

January 19, 2016

Tips For Cherry-Picking The Right LED Lighting Solution…

If you want to find the right LED lighting solution for your greenhouse, start with these tips from top lighting manufacturers.

Read More
Feature Image Cob 700 (NewLux)

November 28, 2015

15 LED Lighting Solutions For Your Greenhouse

Narrowing in on the right LED lighting product often comes down to considering your specific crop needs and growing requirements to see what works best for your application. Here are 15 LED products to take into account when choosing the right fit for your greenhouse.

Read More

October 27, 2015

How Dallas Johnson Greenhouses Is Simplifying Shipping

Two years ago, Dallas Johnson Greenhouses, a 61-acre operation in Council Bluffs, Iowa, and No. 21 of Greenhouse Grower’s Top 100 Growers, was struggling to get its orders out. With its range of potted annuals, there were so many skus that it was impossible to get enough carts into the shipping greenhouse, and the crew couldn’t get orders processed fast enough. As a result, the operation was consistently pulling orders until midnight every night during the busy shipping season, says President and CEO Todd Johnson. So Johnson got together with Arie Van Wingerden at Cherry Creek Systems to discuss his problem, and what they came up with has changed everything, Johnson says. Inside one of Dallas Johnson Greenhouses’ existing structures, the team installed a shipping system made with Echo-Veyors, the popular cable conveyor system designed by Cherry Creek Systems. The system was placed right in the front of the greenhouse, […]

Read More
Tidal Creek Growers

October 24, 2015

Five Tips For Successful Use Of Boom Irrigation Lightin…

Michigan State University Extension shares five tips to help growers use boom irrigation lighting more effectively to accelerate flowering of long-day ornamental crops.

Read More

October 8, 2015

Industry Standards For Greenhouse Lighting On The Horiz…

As the use of LEDs has risen among greenhouse growers, so have concerns about the best way to measure and compare the many LED light products across the market. As a result, the lighting industry is responding to a call for greater transparency and the development of standardized measuring and testing methods.

Read More

September 28, 2015

11 Products For Precision Greenhouse Growing

These new options in equipment, automation, structures, lighting and software are designed to help growers run their operations with efficiency and accuracy and at a lower cost.

Read More
Laura Drotleff

September 25, 2015

Growers Solve Problems With Precision Horticulture

My dad’s hands are covered with sores, nicks, scratches and bruises. It’s the ongoing reward — or drawback — of his ingenuity, as he’s constantly wrenching on equipment or constructing new innovations that will help him get work done more efficiently on the farm. As a kid, I would always marvel at his toughness, and how he would barely notice a new wound, shrugging it off as he kept working, driven to complete his work and bring his idea to fruition. He’s still at it today, and his hands tell the story of the many projects he’s completed over the years. I’m guessing many of you can relate, and your hands look similar to my dad’s. After all, ingenuity is the name of the game in this business, where creative thinking to solve problems often leads to revolutionary solutions that automate production, save labor and cut costs. That’s easy to […]

Read More
[gravityform id="35" title="false" description="false"]