Manage pH And Soluble Salts In Hydroponics

The pH controller (center), dilute acid tank and 8 solenoid valves with distribution lines (left) and datalogger (right)

Hydroponic greenhouse production has garnered increasing interest nationwide. For growers transitioning from greenhouse container production to hydroponics, it is important to be aware of some differences in monitoring pH and EC (electrical conductivity, a measure of soluble salts). This article discusses these differences and presents a case study in pH and EC monitoring.

Acquiring Target pH In Hydroponics Takes Practice

Many container substrate components such as peat, vermiculite, coir and wood products have a moderate buffering capacity for pH. That means it takes large changes in fertilization or acid injection to bring about a modest change in pH. For example, when we observed high pH in 4-inch bedding plants, we switched temporarily to a very acidic fertilizer (100 percent of nitrogen from ammonium/urea instead of 40 percent), it took about a week for a pH change of about 0.5 to 1.0 units to take place. In contrast, pH can change much more dramatically in hydroponic production because water and inert substrates such as perlite or rockwool have very little pH buffering. We have frequently observed pH changes of 1 to 2 units in one day.

In containerized production, it is usually recommended to monitor root-zone pH using the PourThru or 1:2 dilution method once every week or two. In hydroponics, it is critical to monitor pH at least every day. The pH may be monitored by hand — that is, sampling the nutrient solution being circulated to the roots. Alternatively, monitoring may be done continuously using an automated system. These systems vary in their level of sophistication and cost. Sensors that continuously monitor and digitally display pH and EC are on the less expensive end of the spectrum. Other systems can be connected to dataloggers or computers to record values, and high-end integrated systems that use measured values and target thresholds to adjust pH and EC are more expensive.

The target nutrient solution pH in hydroponics is similar to suggested root-zone pH in container production — about 5.5 to 6.5 depending on the crop. To ensure adequate availability of micronutrients in hydroponics, the lower side of these recommendations is often followed, such as a target pH of 5.5. When pH adjustment needs to be made, the tools to solve the problem are also essentially the same as in container production: adjusting the nitrogen form in the fertilizer or adding acid or base. Ammonium and urea are acidic forms of nitrogen, whereas nitrate will increase the pH. By adjusting the ratio of nitrogen sources in the fertilizer solution, pH can be controlled.

With respect to adding acids or bases when a large water reservoir is used, allow time for sufficient mixing. Check the resulting pH after mixing. Continue to add acid or base if further adjustment is needed. Be careful not to overshoot the mark by adding too much at first. As growers gain experience with the growing conditions, they will have a better idea as to how much to add.

High EC Can Be Problematic In Some Hydroponic Systems

The EC of the hydroponic nutrient solution is a measure of all of the salts dissolved in water, including those added in the fertilizer and those present as impurities in the water source. When the water source is relatively pure, the EC is a decent indicator of the fertilizer available to the plant. EC targets vary by crop but are often in the range of 1.0 to 2.0 mS/cm from the fertilizer plus the EC contribution from the water source. A low EC indicates that not enough fertilizer is being supplied to meet plant needs.

In closed hydroponic systems where irrigation water is captured and reused, high EC is a more common problem. This occurs when the non-fertilizer salts and any fertilizer ions supplied above plant needs remain in the nutrient solution and accumulate. Many hydroponic growers find it necessary to filter their tap water so that it is suitable for closed hydroponic systems.

Just like pH, EC should be monitored more frequently in hydroponics than in container production. Though crops vary in their salt sensitivity, a general recommendation is to avoid EC greater than 4.0 mS/cm. In open hydroponic systems where the irrigation water is not captured and reused, the buildup of salts can be managed by applying excess water to leach out soluble salts. In closed systems you will need to “bleed” the reservoir, which involves purposely draining off some fraction of the nutrient solution and replacing it with fresh water.

It is important to get a laboratory analysis of the nutrient solution every week or two to determine the actual nutrients that make up the EC. The solution may be at target EC levels, but if most of this is from non-fertilizer salts that have accumulated, such as bicarbonates, sodium and chloride, then the solution may still be low in fertility. The lab results can also be used to adjust the specific fertilizer ions to make the nutrient solution better balanced to crop needs.

Study Looks At pH And EC Control

To investigate and demonstrate the importance of pH and EC control in hydroponics, a research laboratory was designed and constructed in a greenhouse at the Ohio Agricultural Research and Development Center in Wooster, Ohio, in the spring of 2008. The laboratory consisted of 16 troughs designed to grow lettuce using the nutrient film technique (NFT). The water and nutrient delivery system was capable of randomly and simultaneously delivering different treatments to each of the growing channels using eight solution tanks. Each growing channel was 12 feet long and designed to grow 18 plants 8 inches apart. A datalogger was used to record environmental conditions and nutrient solution temperature.

To gain experience with this new laboratory, nutrient solution pH and EC targets were compared at two levels: pH targets of 5.4 or 6.0 and EC targets of 1.4 or 1.8 mS/cm. Lactuca ‘Rex Bibb’ and Lactuca ‘Green Leaf’ seeds were germinated in 1-inch-by-1-inch-by-1.5-inch grow cubes. The seedlings were transplanted to the growing channels in October 2008 and harvested four weeks later. A pH setting of 5.4 led to 24 percent higher yields than a pH of 6.0, while the main effect of setting EC at 1.4 compared to 1.8 mS/cm was nearly zero.

While extensive efforts were made to manually monitor and modify nutrient solution pH two to three times per day during this first experiment, pH readings were consistently found to be higher than either of the targets that were set for the experiment. These measurements showed that the pH of the nutrient solution was rising faster than we could manually modify it with dilute sulfuric acid on a two- to three-times-per-day basis. It often climbed 1 pH unit higher than the set points within a few hours.

Even though daily measurements showed EC control was reasonably consistent, it is likely that pH was too high, and therefore, extra nutrients that should have been accessible to the lettuce plants when the EC target was set to 1.8 were not available. We concluded that if pH was not kept on target in follow up experiments, the potential impact of high settings of EC on yield would not be realized.

Control pH To Improve Nutrient Use

These observations led to the purchase and installation of a pH control unit for all eight tanks prior to the second experiment in the spring of 2009. This control system can be set to measure and modify pH in each tank individually on a minute-by-minute basis, thus maintaining acid concentrations on target. It consists of a complex of eight panel-mounted Hanna mini pH indicators and controllers from Hanna Instruments in Woonsocket, R.I., that were connected to eight Bluelab pH probes from Bluelab Corporation Limited in New Zealand. One of these probes was installed in each solution tank by floating them on a 15-centimenter-by-15-centimeter-by-2.5-centimenter thick Styrofoam pad.

The overall average fresh weight for lettuce grown during the Fall 2008 experiment was 119 grams per head compared to 162 grams for the Spring 2009 experiment. While differences in climate may have contributed to higher yields in the spring, another possible explanation for the increase may have been more accurate pH control. Note that the impact of setting EC = 1.8 as opposed to EC = 1.4 led to a 17 percent greater yield compared to only a 5 percent advantage for a pH setting of 5.4 versus 6.0. Recall that there was little or no advantage for the setting EC = 1.8 during the first experiment when pH was not controlled successfully. Accurately controlling the pH allowed nutrients to be used more effectively throughout the growing period.

Growing hydroponically allows for more precise control of nutrient solution pH and EC than in containerized production. To optimize crop yield, however, EC and pH must be more frequently monitored as compared to container production.

Leave a Reply

4 comments on “Manage pH And Soluble Salts In Hydroponics

  1. Thanks for information. Can Ammonium and urea base nitrogen can be used in a deep culture? I use 5 gallon buckets with deep culture and my ph runs very high. tap water is at 9.4 and after nuterient it's 7.1-7.4. Can I use miracle grow to lower the ph?

More From ...
Gaillardia x grandiflora 'Arizona Apricot'

February 25, 2015

National Garden Bureau Designates 2015 As Year Of The Gaillardia

Gaillardia, also known as the blanket flower, is a member of the sunflower family (Asteraceae) and a long-blooming pollinator plant. It is fitting that the National Garden Bureau has specified 2015 as The Year of the Gaillardia.

Read More
IPPS Sharing Plant Production Knowledge Globally Logo

February 25, 2015

International Plant Propagators Western Region Sets Annual Meeting Date

The annual meet for the International Plant Propagators' Society (IPPS) Western Region has been set for this September. It will take place September 23 to 26 in Modesto, Calif., and will include learning sessions, tours to local nurseries, a research poster display and poster presentations, various networking opportunities and an awards banquet to close the event.

Read More
Evolvulus Blue My Mind

February 24, 2015

Blue Ribbon Bloomers For Greenhouse Production

Grow what consumers want! Surveys show that blue is one of the top preferred colors of today’s consumers. Here are twelve top recommended blue-flowering Proven Winners annuals and perennials to suit your spring production cycle.

Read More
Latest Stories
Gaillardia x grandiflora 'Arizona Apricot'

February 25, 2015

National Garden Bureau Designates 2015 As Year Of The G…

Gaillardia, also known as the blanket flower, is a member of the sunflower family (Asteraceae) and a long-blooming pollinator plant. It is fitting that the National Garden Bureau has specified 2015 as The Year of the Gaillardia.

Read More
IPPS Sharing Plant Production Knowledge Globally Logo

February 25, 2015

International Plant Propagators Western Region Sets Ann…

The annual meet for the International Plant Propagators' Society (IPPS) Western Region has been set for this September. It will take place September 23 to 26 in Modesto, Calif., and will include learning sessions, tours to local nurseries, a research poster display and poster presentations, various networking opportunities and an awards banquet to close the event.

Read More
Evolvulus Blue My Mind

February 24, 2015

Blue Ribbon Bloomers For Greenhouse Production

Grow what consumers want! Surveys show that blue is one of the top preferred colors of today’s consumers. Here are twelve top recommended blue-flowering Proven Winners annuals and perennials to suit your spring production cycle.

Read More
myers industries Lawn and Garden Logo

February 24, 2015

Myers Industries, Inc. Lawn And Garden Business Sold, N…

The management of Myers Lawn and Garden Group, along with Wingate Partners V, L.P. have recently acquired the Myers Industries, Inc. Lawn and Garden business. The new company is named The HC Companies, and will continue as a North American leading provider of horticulture containers supplying the greenhouse, nursery and retail markets.

Read More
Outfitting Your Greenhouse

February 24, 2015

Save Energy With The Right Greenhouse Glazing

The glazing you choose can make a big difference in your energy bill and the uniformity of your crops.

Read More
Rough Brothers aeroponic greenhouse project

February 24, 2015

Rough Brothers Takes A Hands-On Approach To Several Pro…

Two projects Rough Brothers worked on for Altman plants in Giddings, Texas, and Scissortail Farms in Tulsa County, Okla., show that pre-planning on the grower's part opens the way for a smooth-running expansion project.

Read More
Michigan State University Extension

February 24, 2015

Ethylene From Defective Greenhouse Heaters Damages Crop…

Malfunctioning greenhouse heaters can lead to crop damage from ethylene and carbon monoxide induced illness for workers. Michigan State University's Extension educators Tom Dudek and Randy Beaudry teach you how to recognize the symptoms and check greenhouse heaters to avoid the concern.

Read More
Stuppy Greenhouse Manufacturing's Rainbow Super Structure

February 23, 2015

Stuppy Greenhouse Manufacturing Says Every Customer’s G…

Well-suited greenhouses that function efficiently for customers arise from involving them in the design process from start to finish. Stuppy Greenhouse Manufacturing put this philosophy on a greenhouse design for a wholesale grower looking to expand his annuals operation. The grower's needs were simple, yet daunting: design a greenhouse that delivers the perfect growing environment, but keep maintenance and operating costs low.

Read More
Havest Automation Robot

February 18, 2015

Robots Grab Hold Of Growers’ Material Handling Needs

Harvest Automation’s HV-100 robots automate one of the hardest, most labor-intensive jobs at growing operations – plant spacing. With more technology coming, investing in robots could become even more realistic for growers of all sizes.

Read More

February 18, 2015

Range Of Nursery Inspections To Protect Patented Plants…

Plant patents are under protection, and breeders are fighting for their rights to keep growers from illegally propagating protected varieties. It's something you don't want to take a chance on, because the risk is far higher than the reward. More than 300 inspections were carried out last year from New York to British Columbia and from Ontario to Florida to protect plant patents, Plant Breeders’ Rights (PBR) and branded programs.

Read More

February 18, 2015

California Spring Trials Sneak Peek: New Annuals For 20…

If you're like us and you can't wait until the 2015 California Spring Trials to see some of the new genetics that will be hitting the market in 2016, never fear. We contacted the breeders who will be displaying their new varieties in California in April, and they gave us a sneak peek. Check out our slideshow to see some of the new annuals making their debut to the trade this spring.

Read More
Athena Brazil Salvia 'Brazilian Purple'

February 18, 2015

ForemostCo And Athena Brazil Unite To Supply Unrooted P…

ForemostCo, Inc. and Athena Brazil have forged a working relationship to support each other in the unrooted perennial cuttings market for North America. The partnership, geared toward accommodating increasing demand for unrooted perennial cuttings in North America, adds diversity to a recently consolidated market.

Read More

February 17, 2015

Poinsettias Had Their Best Year In Many In 2014

Poinsettia growers report a strong year in 2014, thanks to a few conditions. Growers were encouraged by high plant quality, enthusiastic shoppers and a stronger, less saturated market for poinsettias throughout the selling season. Seasonal cold at just the right time put consumers in a festive mood to buy early and often, and with no big snowstorms to hold up shipments and a reduction of supply available in the market, the season was strong from start to finish.

Read More

February 17, 2015

A New Look At Biological Control: Can Plants Affect The…

The success of a biological control program depends on a number of factors including quality of natural enemies, timing of release, release rates and environmental conditions. However, what is typically not taken into consideration is how plants can affect the performance of natural enemies, including attack rate and searching ability. Biological control agents work hard to protect plants, but plants have ways to help themselves, too.

Read More
american-hort-logo

February 17, 2015

AmericanHort Announces New Board Members

AmericanHort recently announced the election of new officers and members to the board of directors. Each will assume their positions on the board during Cultivate’15, July 11 to 14 in Columbus, Ohio.

Read More
All American Selections

February 17, 2015

All-America Selections Elects New Officers, Names New J…

While meeting during the Flower and Vegetable Seed Conference in Tampa, Fla., hosted by the American Seed Trade Association, All-America Selections elected new officers for a two-year term. Read on to learn about the new officers, as well as all of the new judges that were added in 2014.

Read More
Geranium x cantabrigiense 'Biokovo'

February 17, 2015

Geranium Hybrid ‘Biokovo’ Dubbed 2015 Peren…

Geranium xcantabrigiense ‘Biokovo,' a naturally occurring hybrid of G. dalmaticum and G. macrorrhizum, is the Perennial Plant Association's top pick for 2015 Perennial of the Year. Learn why this tough, landscape geranium took home the prize.

Read More

February 12, 2015

GROW Perspective: What Is It You Do Again?

The industry is very good at talking about what we do and how we do it, but has almost completely lost touch with talking about why this work is important. As an industry, we need to promote our professions as vital to healthier living.

Read More